HOMEWORK \#7 IN ALGEBRAIC STRUCTURES 2

1. Prove Lemma 7.2.
2. Prove Lemma 7.4.
3. Show that the condition P2 implies P3 and the condition P3 implies P4 [see Lemma 7.5].
4. Let $\alpha \in \mathbb{C}$ be the positive 4 -th root of $2, L:=\mathbb{Q}(\alpha)$ and $M \subset \mathbb{C}$ be the splitting field of $t^{4}-2$. Show that
a) $[L: \mathbb{Q}]=4$ and the polynomial $t^{4}-2$ is irreducible in $\mathbb{Q}[t]$,
b) $M=L(i), i^{2}=-1$,
c) the polynomial $t^{4}-2$ is irreducible in $\mathbb{Q}(i)[t]$,
d) there exists $\sigma \in \operatorname{Gal}(M / \mathbb{Q})$ such that $\sigma(\alpha)=i \alpha$ and $\sigma(i)=i$,
e) $\sigma^{2} \neq e, \sigma^{4}=e$,
f) there exists $\tau \in \operatorname{Gal}(M / L) \subset \operatorname{Gal}(M / \mathbb{Q})$ such that $\tau(i)=-i$,
g) $\tau \sigma=\sigma^{3} \tau$
h) the group $\operatorname{Gal}(M / \mathbb{Q})$ is generated by τ, σ and the table of the multiplication in $\operatorname{Gal}(M / \mathbb{Q})$ can be deduced from the relations

$$
\sigma^{4}=e, \tau^{2}=e, \tau \sigma=\sigma^{3} \tau
$$

5. Let K be a field of characteristic $p>0, \alpha \in \bar{K}$. Show that α is separable over K iff $[K(\alpha): K]=\left[K\left(\alpha^{p}\right): K\right]$
