HOMEWORK \#8 IN ALGEBRAIC STRUCTURES 2

Problem 1. Prove Lemma 8.1.
Problem 2. Prove Lemma 8.3 (a)-(e).
Problem 3. Prove Lemma 8.3'.
Problem 4. Let $K \subset L_{1}, L_{2} \subset \bar{K}$ be two finite extensions and let $L:=$ $L_{1} L_{2} \subset \bar{K}$ be the subfield generated by L_{1} and $L_{2} . L$ is called the compositum of L_{1}, L_{2}.
(a) Show that if $L_{1} / K, L_{2} / K$ are normal extensions, so is L / K.
(b) Show that if $L_{1} / K, L_{2} / K$ are Galois, so is L / K, and $\operatorname{Gal}(\bar{K} / L)=$ $\operatorname{Gal}\left(\bar{K} / L_{1}\right) \cap \operatorname{Gal}\left(\bar{K} / L_{2}\right)$.
(c) Show that under the assumptions of (b), the mapping $\operatorname{Gal}(L / K) \rightarrow$ $\operatorname{Gal}\left(L_{1} / K\right) \times \operatorname{Gal}\left(L_{2} / K\right)$ defined by taking $\sigma \in \operatorname{Gal}(L / K)$ to $\left(\sigma_{\left.\right|_{L_{1}}}, \sigma_{\left.\right|_{L_{2}}}\right)$ is a monomorphism of groups.

Problem 5. Let K be a field such that $\operatorname{ch}(K) \neq 2, a_{1}, \ldots, a_{n} \in K$.
(a) Show that the extension $K\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right) / K, a_{i} \in K$ is a Galois extension and the Galois group $\operatorname{Gal}\left(K\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right) / K\right)$ is direct product of k copies of $\mathbb{Z} / 2 \mathbb{Z}$ where $k \leq n$.
(b) Under which conditions do we have $\left[K\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right): K\right]=2^{n}$?

Problem 6. Let K be a field of characteristic zero, $n>1$ be an integer such that the equation $t^{n}-1$ has n solutions in K.
(a) Show that the extension $K\left(\sqrt[n]{a_{1}}, \sqrt[n]{a_{2}}\right) / K, a_{i} \in K$ is a Galois extension and the Galois group $G:=\operatorname{Gal}\left(K\left(\sqrt[n]{a_{1}}, \sqrt[n]{a_{2}}\right) / K\right)$ is isomorphic to the direct product

$$
G=\mathbb{Z} / r_{1} \mathbb{Z} \times \mathbb{Z} / r_{2} \mathbb{Z}
$$

where r_{i} are divisors of n,
(b) Under which conditions do we have $\left[K\left(\sqrt[n]{a_{1}}, \sqrt[n]{a_{2}}\right): K\right]=n^{2}$?

