HOMEWORK #8 IN ALGEBRAIC STRUCTURES 2

Problem 1. Prove Lemma 8.1.

Problem 2. Prove Lemma 8.3 (a)–(e).

Problem 3. Prove Lemma 8.3'.

Problem 4. Let $K \subset L_1, L_2 \subset \overline{K}$ be two finite extensions and let $L := L_1L_2 \subset \overline{K}$ be the subfield generated by L_1 and L_2 . L is called the *compositum* of L_1, L_2 .

- (a) Show that if L_1/K , L_2/K are normal extensions, so is L/K.
- (b) Show that if L_1/K , L_2/K are Galois, so is L/K, and $\operatorname{Gal}(K/L) = \operatorname{Gal}(\bar{K}/L_1) \cap \operatorname{Gal}(\bar{K}/L_2)$.
- (c) Show that under the assumptions of (b), the mapping $\operatorname{Gal}(L/K) \to \operatorname{Gal}(L_1/K) \times \operatorname{Gal}(L_2/K)$ defined by taking $\sigma \in \operatorname{Gal}(L/K)$ to $(\sigma_{|_{L_1}}, \sigma_{|_{L_2}})$ is a monomorphism of groups.

Problem 5. Let K be a field such that $ch(K) \neq 2, a_1, \ldots, a_n \in K$.

- (a) Show that the extension $K(\sqrt{a_1}, \ldots, \sqrt{a_n})/K$, $a_i \in K$ is a Galois extension and the Galois group $\operatorname{Gal}(K(\sqrt{a_1}, \ldots, \sqrt{a_n})/K)$ is direct product of k copies of $\mathbb{Z}/2\mathbb{Z}$ where $k \leq n$.
- (b) Under which conditions do we have $[K(\sqrt{a_1}, \dots, \sqrt{a_n}) : K] = 2^n$?

Problem 6. Let K be a field of characteristic zero, n > 1 be an integer such that the equation $t^n - 1$ has n solutions in K.

(a) Show that the extension $K(\sqrt[n]{a_1}, \sqrt[n]{a_2})/K$, $a_i \in K$ is a Galois extension and the Galois group $G := \text{Gal}(K(\sqrt[n]{a_1}, \sqrt[n]{a_2})/K)$ is isomorphic to the direct product

$$G = \mathbb{Z}/r_1\mathbb{Z} \times \mathbb{Z}/r_2\mathbb{Z}$$

where r_i are divisors of n,

(b) Under which conditions do we have $[K(\sqrt[n]{a_1}, \sqrt[n]{a_2}) : K] = n^2$?