SAMPLE PROBLEMS FOR THE QUIZ

Problem 1. Let F be a field and let $F(t)$ be the field of rational functions over F. Let $s=f(t) \in F[t]$ be a polynomial of positive degree.
(a) Show that $F(t) \supset F(s)$ is an algebraic extension and compute the degree $[F(t): F(s)]$.
(b) Show that $F(s) \supset F$ is transcendental.

Problem 2. Prove that the polynomial $x^{4}+8 x^{3}+19 x^{2}+12 x+6$ is irreducible in $\mathbb{Q}[x]$.
Problem 3. Let $\alpha=\sqrt[3]{11}$ be a third root of 11 , and let $K=\mathbb{Q}(\alpha)$.
(a) Compute $[K: \mathbb{Q}]$.
(b) Is $[K: \mathbb{Q}]$ normal?
(c) Compute the Galois group $\operatorname{Gal}(K / \mathbb{Q})$.

Problem 4. Let $L \supset K$ be a field extension such that $[L: K]$ is prime. Prove that the extension is simple.

Problem 5. For each of the following claims, state whether it is true or false. Prove or give a counterexample.
(a) Any field K admits a nontrivial finite algebraic extension.
(b) Any simple extension is algebraic.

