HOMEWORK \#1 SOLUTIONS TO SELECTED PROBLEMS

Problem 1.2. (a) To compute $[\mathbb{C}: \mathbb{R}]$, note that $\mathbb{C}=\mathbb{R}(i)$ and i is a solution to the polynomial $x^{2}+1 \in \mathbb{R}[x]$. This polynomial is irreducible, otherwise it would have a linear factor hence a solution in \mathbb{R}, which is impossible. So by problem 5 we see that $[\mathbb{C}: \mathbb{R}]=[\mathbb{R}(i): \mathbb{R}]=2$.
(b) The field \mathbb{Q} is countable. Hence any simple extension $\mathbb{Q}(\alpha)$ is also countable, but \mathbb{R} is not countable.

To show that a simple extension of a countable field is also countable, note that such an extension is either isomorphic to a homomorphic image of the polynomial ring $F[x]$ (in the case of algebraic extension), or isomorphic to the field or rational functions $F(x)$ (in the case of transcendental extension). Since $F[x] \subset F(x)$ and $F(x)$ is countable, the claim follows.
(c) We use the definition of $K(\alpha)$ as the set of all elements of the form $f(\alpha) / g(\alpha)$ where $f, g \in K[x]$ and $g(\alpha) \neq 0$. Since this set is closed under additions, multiplications and taking inverses, it is a subfield of L. In fact, is it the minimal subfield of L containing K and α.
(d) Similar to (c).
(e) Suppose $p \in \mathbb{R}[x]$ is irreducible. Let $\alpha \in \mathbb{C}$ be a solution of $p(x)=0$ (exists since \mathbb{C} is algebraically closed). Then by problem $5,[\mathbb{R}(\alpha): \mathbb{R}]=$ $\operatorname{deg} p$, but $\mathbb{R}(\alpha) \subseteq \mathbb{C}$, hence $[\mathbb{R}(\alpha): \mathbb{R}] \leq[\mathbb{C}: \mathbb{R}]=2$. We deduce that $\operatorname{deg} p \leq 2$.

Problem 1.3. To prove that the $\left\{l_{i j}\right\}$ are linearly independent over K, assume that there exist $a_{i j} \in K$ such that $\sum_{i, j} a_{i j} l_{i j}=0$. Write this sum as

$$
0=\sum_{i, j} a_{i j} \alpha_{i} \beta_{j}=\sum_{i}\left(\sum_{j} a_{i j} \beta_{j}\right) \alpha_{i}
$$

For each $i, \sum_{j} a_{i j} \beta_{j} \in F$, hence by the linear independence of the α_{i} over F we get that $\sum_{j} a_{i j} \beta_{j}=0$ for all i. Now using the linear independence of the β_{j} over K, we get that $a_{i j}=0$ for all i and j.

Problem 1.4. (a) It is enough to show that the polynomial $f(x)=x^{3}-$ $x^{2}+x+2$ is irreducible in $\mathbb{Q}[x]$, since by problem 5 it will follow that for any solution u of $f(x)$ we have $[\mathbb{Q}(u): \mathbb{Q}]=\operatorname{deg} f=3$, independent of u.

We prove the irreducibility of f in two steps, which are interesting in their own right.

Lemma. Let F be a field and let $f \in F[x]$ be a polynomial of degree 2 or 3. Then f is irreducible if and only if it has no roots in F.

Proof. If f has a root $a \in F, f$ has $x-a$ as a factor (this is true for any polynomial), and cannot be irreducible. On the other hand, for any nontrivial factorization $f=g h$ in $F[x]$, the degree of (at least) one of the factors
would be 1 . Since any polynomial of degree 1 has a root in F, it would follow that f has a root in F.

Lemma. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial in $\mathbb{Z}[x]$. Suppose that $p / q \in \mathbb{Q}$ is a root of f, where p, q are relatively prime. Then:

$$
p \mid a_{0} \quad \text { and } \quad q \mid a_{n}
$$

Proof. By assumption, $f(p / q)=0$. Multiplying by q^{n}, we get

$$
0=a_{0} q^{n}+a_{1} q^{n-1} p+\ldots a_{n-1} q p^{n-1}+a_{n} p^{n}
$$

Positive powers of p appear in all summands except for the left one, hence they are divisible by p. Since the total sum is 0 , it follows that p divides also $a_{0} q^{n}$. Since p, q are relatively prime, we get $p \mid a_{0}$. The other assertion is proved similarly.

Now consider the polynomial $x^{3}-x^{2}+x+2$ in $\mathbb{Q}[x]$. By the first lemma, to prove irreducibility it is enough to show that it has no roots in \mathbb{Q}. By the second lemma, the only possible roots p / q must have $p \mid 2$ and $q \mid 1$, so that $p \in\{1,-1,2,-2\}$ and $q \in\{1,-1\}$. Since $-1,1,2,-2$ are not roots of f, it follows that f has no rational root and therefore is irreducible.
(c) If ζ is a primitive n-th root of unity, then all other n-th roots of unity are powers of ζ, because the powers of ζ are n distinct elements which are roots of unity, but on the other hand, the polynomial $x^{n}-1$ has at most n solutions.

Therefore, for another primitive n-th root of unity ζ^{\prime}, we have $\zeta^{\prime} \in \mathbb{Q}(\zeta)$, hence $\mathbb{Q}\left(\zeta^{\prime}\right) \subseteq \mathbb{Q}(\zeta)$. Interchanging roles gives $\mathbb{Q}\left(\zeta^{\prime}\right)=\mathbb{Q}(\zeta)$, so the field is independent on the particular choice of primitive n-th root.
(d) $\left[L_{2}: \mathbb{Q}\right]=1,\left[L_{3}: \mathbb{Q}\right]=2,\left[L_{4}: \mathbb{Q}\right]=2$.

To prove these, note that -1 is a primitive 2 -th root of unity; i is a primitive 4 -th root of unity solving the equation $x^{2}+1=0$ and $\omega=e^{2 \pi i / 3}$ is a primitive 3 -th root of unity solving $x^{2}+x+1=0$. These polynomials of degree 2 are irreducible in $\mathbb{Q}[x]$ since they have no rational roots.

Problem 1.5. Let L / K be a field extension and let $\alpha \in L$ be any element. We can define a homomorphism of rings $\varphi_{\alpha}: K[x] \rightarrow L$ by setting $\varphi_{\alpha}(f)=$ $f(\alpha) \in L$.

Let's consider the kernel $\operatorname{ker} \varphi_{\alpha}$, which is an ideal of $F[x]$. There are two possibilities:

1. $\operatorname{ker} \varphi_{\alpha}=(0)$. In this case α is called transcendental over K.
2. $\operatorname{ker} \varphi_{\alpha} \neq(0)$. In this case α is algebraic over K. We concentrate on this latter case.

Since $K[x]$ is a principal ideal domain, the ideal $\operatorname{ker} \varphi_{\alpha}$ is generated by one element, which could be scaled to be monic (upper coefficient is 1). Denote it by m_{α}, so that $\operatorname{ker} \varphi_{\alpha}=\left(m_{\alpha}\right)$.

I claim that m_{α} is irreducible in $K[x]$. Indeed, if m_{α} factorizes as $m_{\alpha}(x)=$ $g(x) h(x)$, then applying φ_{α}, one would get $0=m_{\alpha}(\alpha)=g(\alpha) h(\alpha)$, hence one of g, h, say g, is in $\operatorname{ker} \varphi_{\alpha}=\left(m_{\alpha}\right)$, so that both $g \mid m_{\alpha}$ and $m_{\alpha} \mid g$ and the factorization is trivial.

Now let's consider the image of $\varphi_{\alpha} . \operatorname{Im} \varphi_{\alpha} \subset L$ is a sub-ring. By the isomorphism theorem

$$
\operatorname{Im} \varphi_{\alpha} \simeq K[x] / \operatorname{ker} \varphi_{\alpha}=K[x] /\left(m_{\alpha}\right)
$$

Since m_{α} is irreducible, the ideal $\left(m_{\alpha}\right)$ is maximal, hence the quotient $K[x] /\left(m_{\alpha}\right)$ is a field. It follows that $\operatorname{Im} \varphi_{\alpha}$ is a subfield of L.

Obviously, $K \subset \operatorname{Im} \varphi_{\alpha}$ (as the image of the constant polynomials of degree 0) and $\alpha \in \operatorname{Im} \varphi_{\alpha}$ (as the image of the polynomial x). On the other hand, any field containing K and α must contain the elements $f(\alpha)=\varphi_{\alpha}(f)$ for all $f \in K[x]$. It follows that $\operatorname{Im} \varphi_{\alpha}$ is the minimal subfield of L containing K and α, i.e. $\operatorname{Im} \varphi_{\alpha}=K(\alpha)$.

We conclude that $K(\alpha) \simeq K[x] /\left(m_{\alpha}\right)$. To compute $[K(\alpha): K]$, it is enough to construct a basis of $K[x] /\left(m_{\alpha}\right)$ over K. Denote by \bar{f} the image of $f \in K[x]$ in the quotient ring $K[x] /\left(m_{\alpha}\right)$. I claim that $\overline{1}, \bar{x}, \ldots, \bar{x}^{n-1}$ is such a basis, where $n=\operatorname{deg} m_{\alpha}$. Hence $[K(\alpha): K]=\operatorname{deg} m_{\alpha}$.

The elements are independent over K, since any dependency leads to a polynomial $g(x)$ of degree less than n whose image is 0 , which is impossible unless $g=0$. On the other hand, it is clear that the elements span $K[x] /\left(m_{\alpha}\right)$: any polynomial $f \in K[x]$ can be written as $f=q m_{\alpha}+r$ with $\operatorname{deg} r<n$, and then $\bar{f}=\bar{r}$ is a linear combination of $\overline{1}, \ldots, \bar{x}^{n-1}$.

