HOMEWORK #1 SOLUTIONS TO SELECTED PROBLEMS

Problem 1.2. (a) To compute $[\mathbb{C} : \mathbb{R}]$, note that $\mathbb{C} = \mathbb{R}(i)$ and *i* is a solution to the polynomial $x^2 + 1 \in \mathbb{R}[x]$. This polynomial is irreducible, otherwise it would have a linear factor hence a solution in \mathbb{R} , which is impossible. So by problem 5 we see that $[\mathbb{C} : \mathbb{R}] = [\mathbb{R}(i) : \mathbb{R}] = 2$.

(b) The field \mathbb{Q} is countable. Hence any simple extension $\mathbb{Q}(\alpha)$ is also countable, but \mathbb{R} is not countable.

To show that a simple extension of a countable field is also countable, note that such an extension is either isomorphic to a homomorphic image of the polynomial ring F[x] (in the case of algebraic extension), or isomorphic to the field or rational functions F(x) (in the case of transcendental extension). Since $F[x] \subset F(x)$ and F(x) is countable, the claim follows.

(c) We use the definition of $K(\alpha)$ as the set of all elements of the form $f(\alpha)/g(\alpha)$ where $f, g \in K[x]$ and $g(\alpha) \neq 0$. Since this set is closed under additions, multiplications and taking inverses, it is a subfield of L. In fact, is it the *minimal* subfield of L containing K and α .

(d) Similar to (c).

(e) Suppose $p \in \mathbb{R}[x]$ is irreducible. Let $\alpha \in \mathbb{C}$ be a solution of p(x) = 0(exists since \mathbb{C} is algebraically closed). Then by problem 5, $[\mathbb{R}(\alpha) : \mathbb{R}] = \deg p$, but $\mathbb{R}(\alpha) \subseteq \mathbb{C}$, hence $[\mathbb{R}(\alpha) : \mathbb{R}] \leq [\mathbb{C} : \mathbb{R}] = 2$. We deduce that $\deg p \leq 2$.

Problem 1.3. To prove that the $\{l_{ij}\}$ are linearly independent over K, assume that there exist $a_{ij} \in K$ such that $\sum_{i,j} a_{ij} l_{ij} = 0$. Write this sum as

$$0 = \sum_{i,j} a_{ij} \alpha_i \beta_j = \sum_i \left(\sum_j a_{ij} \beta_j \right) \alpha_i$$

For each i, $\sum_{j} a_{ij}\beta_j \in F$, hence by the linear independence of the α_i over F we get that $\sum_{j} a_{ij}\beta_j = 0$ for all i. Now using the linear independence of the β_j over K, we get that $a_{ij} = 0$ for all i and j.

Problem 1.4. (a) It is enough to show that the polynomial $f(x) = x^3 - x^2 + x + 2$ is irreducible in $\mathbb{Q}[x]$, since by problem 5 it will follow that for any solution u of f(x) we have $[\mathbb{Q}(u) : \mathbb{Q}] = \deg f = 3$, independent of u.

We prove the irreducibility of f in two steps, which are interesting in their own right.

Lemma. Let F be a field and let $f \in F[x]$ be a polynomial of degree 2 or 3. Then f is irreducible if and only if it has no roots in F.

Proof. If f has a root $a \in F$, f has x - a as a factor (this is true for any polynomial), and cannot be irreducible. On the other hand, for any non-trivial factorization f = gh in F[x], the degree of (at least) one of the factors

would be 1. Since any polynomial of degree 1 has a root in F, it would follow that f has a root in F.

Lemma. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial in $\mathbb{Z}[x]$. Suppose that $p/q \in \mathbb{Q}$ is a root of f, where p, q are relatively prime. Then:

$$p \mid a_0 \quad and \quad q \mid a_n$$

Proof. By assumption, f(p/q) = 0. Multiplying by q^n , we get

$$0 = a_0 q^n + a_1 q^{n-1} p + \dots + a_{n-1} q p^{n-1} + a_n p^n$$

Positive powers of p appear in all summands except for the left one, hence they are divisible by p. Since the total sum is 0, it follows that p divides also a_0q^n . Since p, q are relatively prime, we get $p \mid a_0$. The other assertion is proved similarly.

Now consider the polynomial $x^3 - x^2 + x + 2$ in $\mathbb{Q}[x]$. By the first lemma, to prove irreducibility it is enough to show that it has no roots in \mathbb{Q} . By the second lemma, the only possible roots p/q must have $p \mid 2$ and $q \mid 1$, so that $p \in \{1, -1, 2, -2\}$ and $q \in \{1, -1\}$. Since -1, 1, 2, -2 are not roots of f, it follows that f has no rational root and therefore is irreducible.

(c) If ζ is a primitive *n*-th root of unity, then all other *n*-th roots of unity are powers of ζ , because the powers of ζ are *n* distinct elements which are roots of unity, but on the other hand, the polynomial $x^n - 1$ has at most *n* solutions.

Therefore, for another primitive *n*-th root of unity ζ' , we have $\zeta' \in \mathbb{Q}(\zeta)$, hence $\mathbb{Q}(\zeta') \subseteq \mathbb{Q}(\zeta)$. Interchanging roles gives $\mathbb{Q}(\zeta') = \mathbb{Q}(\zeta)$, so the field is independent on the particular choice of primitive *n*-th root.

(d) $[L_2:\mathbb{Q}] = 1, [L_3:\mathbb{Q}] = 2, [L_4:\mathbb{Q}] = 2.$

To prove these, note that -1 is a primitive 2-th root of unity; *i* is a primitive 4-th root of unity solving the equation $x^2 + 1 = 0$ and $\omega = e^{2\pi i/3}$ is a primitive 3-th root of unity solving $x^2 + x + 1 = 0$. These polynomials of degree 2 are irreducible in $\mathbb{Q}[x]$ since they have no rational roots.

Problem 1.5. Let L/K be a field extension and let $\alpha \in L$ be any element. We can define a homomorphism of rings $\varphi_{\alpha} : K[x] \to L$ by setting $\varphi_{\alpha}(f) = f(\alpha) \in L$.

Let's consider the kernel ker φ_{α} , which is an ideal of F[x]. There are two possibilities:

1. ker $\varphi_{\alpha} = (0)$. In this case α is called *transcendental* over K.

2. ker $\varphi_{\alpha} \neq (0)$. In this case α is algebraic over K. We concentrate on this latter case.

Since K[x] is a principal ideal domain, the ideal ker φ_{α} is generated by one element, which could be scaled to be monic (upper coefficient is 1). Denote it by m_{α} , so that ker $\varphi_{\alpha} = (m_{\alpha})$.

I claim that m_{α} is irreducible in K[x]. Indeed, if m_{α} factorizes as $m_{\alpha}(x) = g(x)h(x)$, then applying φ_{α} , one would get $0 = m_{\alpha}(\alpha) = g(\alpha)h(\alpha)$, hence one of g, h, say g, is in ker $\varphi_{\alpha} = (m_{\alpha})$, so that both $g \mid m_{\alpha}$ and $m_{\alpha} \mid g$ and the factorization is trivial.

Now let's consider the image of φ_{α} . Im $\varphi_{\alpha} \subset L$ is a sub-ring. By the isomorphism theorem

Im
$$\varphi_{\alpha} \simeq K[x]/\ker \varphi_{\alpha} = K[x]/(m_{\alpha})$$

Since m_{α} is irreducible, the ideal (m_{α}) is maximal, hence the quotient $K[x]/(m_{\alpha})$ is a field. It follows that $\operatorname{Im} \varphi_{\alpha}$ is a subfield of L.

Obviously, $K \subset \operatorname{Im} \varphi_{\alpha}$ (as the image of the constant polynomials of degree 0) and $\alpha \in \operatorname{Im} \varphi_{\alpha}$ (as the image of the polynomial x). On the other hand, any field containing K and α must contain the elements $f(\alpha) = \varphi_{\alpha}(f)$ for all $f \in K[x]$. It follows that $\operatorname{Im} \varphi_{\alpha}$ is the *minimal* subfield of L containing K and α , i.e. $\operatorname{Im} \varphi_{\alpha} = K(\alpha)$.

We conclude that $K(\alpha) \simeq K[x]/(m_{\alpha})$. To compute $[K(\alpha) : K]$, it is enough to construct a basis of $K[x]/(m_{\alpha})$ over K. Denote by \bar{f} the image of $f \in K[x]$ in the quotient ring $K[x]/(m_{\alpha})$. I claim that $\bar{1}, \bar{x}, \ldots, \bar{x}^{n-1}$ is such a basis, where $n = \deg m_{\alpha}$. Hence $[K(\alpha) : K] = \deg m_{\alpha}$.

The elements are independent over K, since any dependency leads to a polynomial g(x) of degree *less* than n whose image is 0, which is impossible unless g = 0. On the other hand, it is clear that the elements span $K[x]/(m_{\alpha})$: any polynomial $f \in K[x]$ can be written as $f = qm_{\alpha} + r$ with deg r < n, and then $\bar{f} = \bar{r}$ is a linear combination of $\bar{1}, \ldots, \bar{x}^{n-1}$.