HOMEWORK \#2 SOLUTIONS TO SELECTED PROBLEMS

Problem 2.1. One has $(a+b)^{p}=\sum_{i=0}^{p}\binom{p}{i} a^{i} b^{p-i}$. All the binomial coefficients $\binom{p}{i}$ are divisible by p for $0<i<p$, as they have p factor in the nominator and no p factor in the denominator.

Problem 2.2. The proof is by induction on n, the case $n=1$ being trivial.
Denote by K_{i} the subfield $K\left(\alpha_{1}, \ldots, \alpha_{i}\right)$, then obviously $K_{1} \subset K_{2} \ldots K_{n-1} \subset$ K_{n}. By definition, $F_{n}=F_{n-1}\left(\alpha_{n}\right)$ is the minimal subfield of L containing F_{n-1} and α_{n}. But by the induction hypothesis, $F_{n-1}=K_{n-1}$. Now K_{n} is a field containing K_{n-1} and α_{n}, so by minimality $K_{n} \supset F_{n}$.

On the other hand, K_{n} is the minimal field containing K and $\alpha_{1}, \ldots, \alpha_{n}$. But $F_{n}=F_{n-1}\left(\alpha_{n}\right)=K_{n-1}\left(\alpha_{n}\right)$ is a subfield of L containing $\alpha_{1}, \ldots, \alpha_{n}$, so that $F_{n} \supset K_{n}$.

Problem 2.3. We construct an isomorphism $L_{n} \simeq K\left(t_{1}, \ldots, t_{n}\right)$ by induction on n. For $n=1$ this is clear. For $n \geq 0$, it is enough to construct an isomorphism $K\left(t_{1}, \ldots, t_{n}\right)(t) \simeq K\left(t_{1}, \ldots, t_{n+1}\right)$, since

$$
L_{n+1}=L_{n}(t) \simeq K\left(t_{1}, \ldots, t_{n}\right)(t) \simeq K\left(t_{1}, \ldots, K_{n+1}\right)
$$

where the first isomorphism follows by the induction hypothesis (any isomorphism $F \simeq E$ can be extended to the fields of rational functions $F(t) \simeq E(t)$ by the action on coefficients).

We construct the isomorphism $K\left(t_{1}, \ldots, t_{n}\right)(t) \simeq K\left(t_{1}, \ldots, t_{n+1}\right)$ in steps. First, we define a monomorphism of rings $K\left(t_{1}, \ldots, t_{n}\right)[t] \rightarrow K\left(t_{1}, \ldots, t_{n+1}\right)$. Then we use the following lemma

Lemma. Let A be a commutative integral domain and $f: A \rightarrow L a$ monomorphism of rings into a field L. Consider the embedding $i: A \rightarrow$ $K(A)$ into the fraction field of A. Then there exists a unique extension of f to a monomorphism of fields, $\tilde{f}: K(A) \rightarrow L$, such that $\tilde{f} \circ i=f($ on $A)$.
to define $K\left(t_{1}, \ldots, t_{n}\right)(t) \rightarrow K\left(t_{1}, \ldots, t_{n+1}\right)$. Finally, we show that this one-to-one map is also surjective (onto).

Step 1. An element of $K\left(t_{1}, \ldots, t_{n}\right)[t]$ has the form $\sum_{i}\left(p_{i} / q_{i}\right) t^{i}$ where $p_{i}, q_{i} \in$ $K\left[t_{1}, \ldots, t_{n}\right]$ are polynomials in n variables. So we map this element to the element

$$
\sum_{i} \frac{p_{i}\left(t_{1}, \ldots, t_{n}\right) t_{n+1}^{i}}{q_{i}\left(t_{1}, \ldots, t_{n}\right)}=\frac{\sum_{i}\left(\prod_{j \neq i} q_{j}\left(t_{1}, \ldots, t_{n}\right)\right) p_{i}\left(t_{1}, \ldots, t_{n}\right) t_{n+1}^{i}}{\prod_{i} q_{i}\left(t_{1}, \ldots, t_{n}\right)}
$$

in $K\left(t_{1}, \ldots, t_{n+1}\right)$
One has to check that this is well defined by verifying that by taking another representative of the same element in $K\left(t_{1}, \ldots, t_{n}\right)[t]$ we land in the same element of $K\left(t_{1}, \ldots, t_{n+1}\right)$.

It is clear that the map defined is a homomorphism of rings. It is also one-to-one since any non-zero polynomial over $K\left(t_{1}, \ldots, t_{n}\right)$ gets mapped to a non-zero element of $K\left(t_{1}, \ldots, t_{n+1}\right)$ (look at the nominator and verify that it is non-zero if at least one of the p_{i} is non-zero).
Step 2. We prove the lemma. The uniqueness of \tilde{f} follows from the fact that for any $a, b \neq 0$ in A we must have

$$
\tilde{f}(a / b)=\tilde{f}(a / 1) \tilde{f}(1 / b)=\tilde{f}(i(a)) / \tilde{f}(i(b))=f(a) / f(b)
$$

So we define $\tilde{f}(a / b)=f(a) / f(b)$. This is well defined since $f(b) \neq 0$ for $b \neq 0$ (f is a monomorphism), and if $c / d=a / b$ then $a d=b c$ hence $f(a) f(d)=$ $f(a d)=f(b c)=f(b) f(c)$ so that $f(a) / f(b)=f(c) / f(d)$ is independent of the representation of element in $K(A)$. It is easy to see that $\tilde{f}: K(A) \rightarrow L$ is a monomorphism.
Step 3. By step 2 we get $K\left(t_{1}, \ldots, t_{n}\right)(t) \rightarrow K\left(t_{1}, \ldots, t_{n+1}\right)$. To prove this map is onto, take an element in $K\left(t_{1}, \ldots, t_{n+1}\right)$, write it as a ratio P / Q of polynomials, and write P, Q as polynomials in t_{n+1} with coefficients in $K\left[t_{1}, \ldots, t_{n}\right]$, i.e. $P=\sum_{i} p_{i}\left(t_{1}, \ldots, t_{n}\right) t_{n+1}^{i}, Q=\sum_{i} q_{i} t_{n+1}^{i}$. Verify that the image of the element

$$
\frac{\sum_{i} \frac{p_{i}}{1}\left(t_{1}, \ldots, t_{n}\right) t^{i}}{\sum_{i} \frac{q_{i}}{1}\left(t_{1}, \ldots, t_{n}\right) t^{i}} \in K\left(t_{1}, \ldots, t_{n}\right)(t)
$$

is P / Q.
Problem 2.4. (a) Since $q(t)=t^{7}-t^{4}+t^{3}-1=\left(t^{3}-1\right)\left(t^{4}+1\right)$, the greatest common divisor of $q(t)$ and $t^{3}-1$ is $t^{3}-1$.

To prove (b) and (c), note that $[K[x] /(f): K]=\operatorname{deg} f$ for any irreducible polynomial $f \in K[x]$ (problem 1.5). The polynomials in (b), (c) are irreducible since they are of degrees 2,3 and have no roots in the base field (see lemma in the solution to problem 1.4).
Problem 2.5. We prove that for any polynomial $f \in K[t]$ of positive degree n, there is an extension L of K such that f splits in L and $[L: K] \leq n!$.

The proof is by induction on $n=\operatorname{deg} f$. For $n=1, f$ is linear hence has exactly one root in K, so we take $L=K$.

Now let $f \in K[t]$ be of degree n. We treat two cases:

1. f is reducible. In this case, write $f=g h$. Write $m=\operatorname{deg} g<n$ and $n-m=\operatorname{deg} h<n$. By the induction hypothesis for g and K, there exists an extension $K^{\prime} \supset K$ such that g splits in K^{\prime} and $\left[K^{\prime}: K\right] \leq m$!. Now, $h \in K[t] \subset K^{\prime}[t]$, so by the induction hypothesis for h and K^{\prime}, there exists an extension $L \supset K^{\prime}$ such that h splits in L and $\left[L: K^{\prime}\right] \leq(n-m)$!. It is easy to see that f splits in L and $[L: K]=\left[L: K^{\prime}\right]\left[K^{\prime}: K\right] \leq m!(n-m)!<n!$.
2. f is irreducible. Take $K^{\prime}=K[t] /(f)$. Then $K^{\prime} \supset K$ is an extension of degree n which has a root of f (namely, the image of t), denote it α. Then in $K^{\prime}[t]$ there is a factorization $f(t)=(t-\alpha) g(t)$ with $g \in K^{\prime}[t]$ and $\operatorname{deg} g=n-1$. By the induction hypothesis for g and K^{\prime}, there is an extension $L \supset K^{\prime}$ such that g splits in L and $\left[L: K^{\prime}\right] \leq(n-1)$!. Then f splits in L and $[L: K]=\left[L: K^{\prime}\right]\left[K^{\prime}: K\right] \leq(n-1)!n=n!$.
