HOMEWORK \#3 SOLUTIONS TO SELECTED PROBLEMS

Problem 3.3. (a) Use Eisenstein's criterion with the prime 7. 7 does not divide the highest coefficient, does divide all other coefficients and 7^{2} does not divide the constant term.
(b) Use the following lemma:

Lemma. Let F be a field and let $a, b \in F$ such that $a \neq 0$. Let $f(t) \in F[t]$ be a polynomial and set $g(t)=f(a t+b)$. Then f is irreducible if and only if g is irreducible.

Proof. If $f(t)=f_{1}(t) f_{2}(t)$ is a non-trivial factorization then $g(t)=f(a t+$ $b)=f_{1}(a t+b) f_{2}(a t+b)$ is a non-trivial factorization of g. Conversely, note that $f(t)=g((t-b) / a)$ so applying the first part gives the result.

So instead of $f(t)=t^{p-1}+\cdots+t+1$ we consider $g(t)=f(t+1)$, Then by $f(t)=\left(t^{p}-1\right) /(t-1)$ we have $g(t)=\left((t+1)^{p}-1\right) / t=\sum_{i=1}^{p}\binom{p}{i} t^{i-1}=$ $t^{p-1}+\sum_{i=1}^{p-1}\binom{p}{i} t^{i-1}$. Since $\binom{p}{i}$ is divisible by p for $0<i<p$ and $p^{2} \nmid p$, we can apply the Eisenstein's criterion for $g(t)$ with the prime p and get that $g(t)$ is irreducible in $\mathbb{Q}[t]$.
Problem 3.4. (a) By Lemma 3.5 (see Lecture Notes), in order to show that $t^{p}-x \in K[t]$ is irreducible, it is enough to show that x has no p-th root in K. Indeed, an element of K has the form $f(x, y) / g(x, y)$ for polynomials $f, g \in \mathbb{F}_{p}[x, y]$. Now, $f(x, y)^{p}=f\left(x^{p}, y^{p}\right)$ (because $a^{p}=a$ for $a \in \mathbb{F}_{p}$), so that $x=(f / g)^{p}$ means $x g\left(x^{p}, y^{p}\right)=f\left(x^{p}, y^{p}\right)$ which is impossible because all monomials in $f\left(x^{p}, y^{p}\right)$ have their x degree divisible by p, and in the LHS all monomials have their x degree congruent to 1 modulo p.
(b) Note that one can think of L as $\mathbb{F}_{p}\left(x^{1 / p}, y\right)$, i.e. rational functions over \mathbb{F}_{p} in $x^{1 / p}$ (a new variable whose p-th power equals x) and y.

Denote by α a p-th root of x. One can construct an explicit isomorphism $L=K(\alpha) \rightarrow \mathbb{F}_{p}\left(x^{1 / p}, y\right)$ by

$$
\begin{array}{r}
\left(f_{0} / g_{0}\right)+\left(f_{1} / g_{1}\right) \alpha+\ldots\left(f_{p-1} / g_{p-1}\right) \alpha^{p-1} \mapsto \\
\left(f_{0} / g_{0}\right)+\left(f_{1} / g_{1}\right) x^{1 / p}+\ldots\left(f_{p-1} / g_{p-1}\right) x^{(p-1) / p}
\end{array}
$$

It is surjective since $\mathbb{F}_{p}\left(x^{1 / p}, y\right)$ is an extension of $\mathbb{F}_{p}(x, y)$ of degree p (it is a simple extension obtained by adjoining $x^{1 / p}$ whose minimal polynomial is of degree p).

Now the proof that $t^{p}-y$ is irreducible in $L[t]$ is the same as in (a), one should consider the y degree in each monomial of the polynomials.
(c) As in (b), one can see that M is isomorphic to $\mathbb{F}_{p}\left(x^{1 / p}, y^{1 / p}\right)$ (a field of rational functions in two variables whose p powers are the original x and $y)$. Any element of M has the form f / g for $f, g \in \mathbb{F}_{p}\left[x^{1 / p}, y^{1 / p}\right]$, so its p-th power is $f\left(\left(x^{1 / p}\right)^{p},\left(y^{1 / p}\right)^{p}\right) / g\left(\left(x^{1 / p}\right)^{p},\left(y^{1 / p}\right)^{p}\right)=f(x, y) / g(x, y)$ a rational function in x, y hence in K.
(d) The extension M / K is not simple since the number of intermediate subfields is infinite. Indeed, for any $f \in K$, consider the subfield $M_{f}:=$ $K\left(f x^{1 / p}+y^{1 / p}\right)$ of M. We have $\left(f x^{1 / p}+y^{1 / p}\right)^{p}=f^{p} x+y \in K$ thus $\left[M_{f}: K\right] \leq p$.

Any two such fields are distinct; if $M_{f}=M_{g}$ then $f x^{1 / p}+y^{1 / p}, g x^{1 / p}+$ $y^{1 / p} \in M_{f}$ hence their difference $(f-g) x^{1 / p} \in M_{f}$ thus $x^{1 / p} \in M_{f}$ and $y^{1 / p}=\left(f x^{1 / p}+y^{1 / p}\right)-f x^{1 / p} \in M_{f}$, so that $M_{f}=M$. But this is impossible since $[M: K]=[M: L][L: K]=p^{2}$ but $\left[M_{f}: K\right] \leq p$.

Since there are infinite elements in $K=\mathbb{F}_{p}(x, y)$, we get infinite number of intermediate fields $K \subset M_{f} \subset M$.
Problem 3.5. (a) We can scale any quadratic equation over K to the form $x^{2}+b x+c=0$ where $b, c \in K$. If char $K \neq 2$, we can "complete the square", i.e. write $x^{2}+b x+c=(x+b / 2)^{2}+\left(c-b^{2} / 4\right)$, so x is the solution to the original equation if and only if $x+b / 2$ is a solution to the equation $t^{2}=b^{2} / 4-c$. Since by assumption the latter equation has a solution in K, we deduce that the original equation has a solution in K.
(b) If char $K=2$, we cannot proceed as in the previous case. Instead, let $x^{2}+b x+c=0$ be a quadratic equation with $b, c \in K$. We distinguish between two cases:
(1) $b=0$. In this case we have $x^{2}=-c$ and a solution x exists by our assumption.
(2) $b \neq 0$. In this case we can write $x=b t$ and then $b^{2} t^{2}+b \cdot b t+c=0$, or $t^{2}+t=-c / b^{2}$, and the latter equation has a solution by our assumption.

Problem 3.6. Let L / K be a field extension with $[L: K]=2$ and assume that char $K \neq 2$. Pick any $\alpha \in L \backslash K$. Then by $[L: K]=[L: K(\alpha)][K(\alpha)$: $K]$ we get that $L=K(\alpha)$. Since $[K(\alpha): K]=2$, the minimal polynomial of α over K has degree 2, i.e. of the form $x^{2}+b x+c=0$ for $b, c \in K$. As in Problem 3.5(a), setting $\beta=\alpha+b / 2$ we see that $\beta^{2}=b^{2} / 4-c \in K$ and $K(\beta)=K(\alpha)$. We conclude that $L=K(\beta)$ with β a square root of an element of K.
(a) It follows that it is enough to consider extensions of the form $\mathbb{F}_{5}(\sqrt{a})$ for $a \in \mathbb{F}_{5}$ which is not a square. The only possible values of a are $a=2,3$. Let's construct an isomorphism $\mathbb{F}_{5}(\sqrt{2}) \simeq \mathbb{F}_{5}(\sqrt{3})$.

Elements of $\mathbb{F}_{5}(\sqrt{3})$ are of the form $c+d \sqrt{3}$ for $c, d \in \mathbb{F}_{5}$. Since $(2 \sqrt{2})^{2}=$ $4 \cdot 2=3$, we define

$$
c+d \sqrt{3} \mapsto c+2 d \sqrt{2}
$$

It is easy to verify that this defines the required isomorphism.
We conclude that there is only one quadratic extension of \mathbb{F}_{5}, up to isomorphism.
(b) Since α is the sum of $\sqrt{2}, \sqrt{3} \in L$, obviously $\mathbb{Q}(\alpha) \subseteq L$. For the opposite inclusion, note that $(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})=1$, hence $\sqrt{3}-\sqrt{2}=1 / \alpha$. We see that $\sqrt{3}=(\alpha+1 / \alpha) / 2 \in \mathbb{Q}(\alpha)$ and $\sqrt{2}=(\alpha-1 / \alpha) / 2 \in \mathbb{Q}(\alpha)$, hence $L=\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\alpha)$.

