HOMEWORK \#4 SOLUTIONS TO SELECTED PROBLEMS

Problem 4.2. The derivation $D: K[t] \rightarrow K[t]$ is defined by $D\left(t^{n}\right)=n t^{n-1}$ and then extending by linearity. To prove (a), it is enough to consider the basis elements t^{n} of $K[t]$ over K. Indeed, one has

$$
D\left(t^{n} \cdot t^{m}\right)=(n+m) t^{n+m-1}=n t^{n-1} t^{m}+m t^{m-1} t^{n}=D\left(t^{n}\right) t^{m}+t^{n} D\left(t^{m}\right)
$$

For (b), note that for $f(t)=a_{0}+a_{1}+\cdots+a_{n} t^{n}$, one has $(D f)(t)=$ $\sum_{i \geq 1} i a_{i} t^{i-1}$. Hence, $D f=0$ implies $i a_{i}=0$ for all i and since K has characteristic zero, this implies $a_{i}=0$ for all i so that $f=0$.
(c) The same reasoning gives $i a_{i}=0$ for all i. Hence, if i is not divisible by p, then $a_{i}=0$. We get that $f(t)=a_{0}+a_{p} t^{p}+\ldots$. Since K is perfect, for any $j \geq 0$ one can find b_{j} with $b_{j}^{p}=a_{j p}$. Taking $g(t)=b_{0}+b_{1} t+\ldots$, we see that $g(t)^{p}=b_{0}^{p}+b_{1}^{p} t^{p}+\cdots=f(t)$, as required.

Problem 4.3. (a) One can write $x^{p}-1=(x-1)\left(x^{p-1}+\cdots+x+1\right)$. Since ζ is a root of $x^{p}-1$ but $\zeta \neq 1$, it follows that ζ is a root of the polynomial $f(x)=x^{p-1}+\cdots+x+1$. But by Problem $3.3(\mathrm{~b}), f$ is irreducible in $\mathbb{Q}[x]$, hence it is the minimal polynomial of ζ over \mathbb{Q} and $[\mathbb{Q}(\zeta): \mathbb{Q}]=\operatorname{deg} f=p-1$.
(b) I will give a few lemmas which relate the action of field automorphisms to roots of polynomials.

Lemma 1. Let L / K be a field extension and $\sigma \in \operatorname{Gal}(L / K)$ be an automorphism of L. If $\alpha \in L$ is a root of a polynomial $f \in K[t]$ then $\sigma(\alpha)$ is also a root of f.

Proof. Write $f(t)=c_{0}+c_{1} t+\cdots+c_{n} t^{n}$ where $c_{i} \in K$. Since $f(\alpha)=0$, one has

$$
\begin{aligned}
0 & =\sigma(f(\alpha))=\sigma\left(c_{0}+c_{1} \alpha+\cdots+c_{n} \alpha^{n}\right) \\
& =\sigma\left(c_{0}\right)+\sigma\left(c_{1}\right) \sigma(\alpha)+\ldots \sigma\left(c_{n}\right) \sigma(\alpha)^{n} \\
& =c_{0}+c_{1} \sigma(\alpha)+\cdots+c_{n} \sigma(\alpha)^{n}=f(\sigma(\alpha))
\end{aligned}
$$

where in the last line we used the fact the σ acts as identity on the elements of K.

Lemma 2. Let L / K be a field extension and suppose there exist $\alpha_{1}, \ldots, \alpha_{n} \in$ L such that $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. If $\sigma, \tau \in \operatorname{Gal}(L / K)$ satisfy $\sigma\left(\alpha_{i}\right)=\tau\left(\alpha_{i}\right)$ for all $1 \leq i \leq n$, then $\sigma=\tau$. In other words, an automorphism of L / K is determined by its values on $\alpha_{1}, \ldots, \alpha_{n}$.

Proof. Let $M=\{x \in L: \sigma(x)=\tau(x)\}$. Then M is a subfield of L containing K (since both σ and τ are the identity on K) and $\alpha_{1}, \ldots, \alpha_{n}$ (by assumption). So by the minimality of L we have $M=L$.

Lemma 3. Let L / K be a field extension and α, β be algebraic over K. Then there exists a field isomorphism $\sigma: K(\alpha) \rightarrow K(\beta)$ such that $\sigma(\alpha)=\beta$ and $\sigma_{\mid K}=i d_{K}$ if and only if α and β have the same minimal polynomial over K.

Proof. Assume that such σ exists. Then by the proof of lemma 1 we see that if $f(\alpha)=0$ for some $f \in K[t]$ then $f(\beta)=0$. In particular this holds when f is the minimal polynomial of α. Since f is irreducible and $f(\beta)=0$, we get that f is also the minimal polynomial of β.

Conversely, let f be the minimal polynomial of α (and of β). Looking at the diagram

where the isomorphisms $\varphi_{\alpha}, \varphi_{\beta}$ take the class $t+(f)$ to α, β respectively, we see that $\sigma:=\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ is the required field isomorphism.

Having these lemmas at our disposal, we may proceed with the solution of the problem. Let $L=\mathbb{Q}(\zeta)$ and let $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$. By lemma $1, \sigma(\zeta)$ must be a root of $x^{p}-1$ (because ζ is), hence there exists $\alpha(\sigma)$ such that $\sigma(\zeta)=\zeta^{\alpha(\sigma)}$. Note that $\alpha(\sigma)$ cannot be zero (why?).
(c) Let $\sigma, \tau \in \operatorname{Gal}(L / \mathbb{Q})$. Then

$$
\sigma \tau(\zeta)=\sigma\left(\zeta^{\alpha(\tau)}\right)=(\sigma(\zeta))^{\alpha(\tau)}=\left(\zeta^{\alpha(\sigma)}\right)^{\alpha(\tau)}=\zeta^{\alpha(\sigma) \alpha(\tau)}
$$

On the other hand, $\sigma \tau(\zeta)=\zeta^{\alpha(\sigma \tau)}$.
(d) For any $0<i<p$, the minimal polynomial of ζ^{i} is equal to that of ζ. Note also that $\mathbb{Q}\left(\zeta^{i}\right)=L$ (because p is prime hence ζ is a power of ζ^{i}). Therefore, by lemma 3, one can construct an automorphism in $\operatorname{Gal}(L / \mathbb{Q})$ moving ζ to ζ^{i}. This shows that the mapping is onto. It is one-to-one since the value of an automorphism in $\operatorname{Gal}(L / \mathbb{Q})$ is determined by its value on ζ by lemma 2 .

Problem 4.4. (a) Suppose that $L=K[t] /\left(t^{2}-a\right)$ for some $a \in K$. Let $\alpha \in L$ be a root of $t^{2}-a$. Then in $L[t](t-\alpha)^{2}=t^{2}-\alpha^{2}=t^{2}-a$. Let $\sigma \in \operatorname{Gal}(L / K)$. By lemma $1, \sigma$ must map α to a root of $t^{2}-a$, hence to itself, so that $\sigma(\alpha)=\alpha$). Since $L=K(\alpha)$, by lemma 2 we have $\operatorname{Gal}(L / K)=\left\{i d_{L}\right\}$.
(b) Suppose now that $L=K[t] /\left(t^{2}-t-a\right)$ for some $a \in K$. Let $\alpha \in L$ be a root of $t^{2}-t-a$. Then $\alpha+1$ is another root since $(\alpha+1)^{2}-(\alpha+1)-a=$ $\alpha^{2}+1-\alpha-1-a=0$. Since $L=K(\alpha)$, an element in $\operatorname{Gal}(L / K)$ is determined by its action on α. If $t^{2}-t-a$ is irreducible (otherwise $L=K$) then by lemma 3 one can construct automorphisms of L taking α to itself or to $\alpha+1$. So $\operatorname{Gal}(L / K)$ is a cyclic group with 2 elements.

Problem 4.5. We already know that $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $[L: \mathbb{Q}]=4$. Looking at the tower $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{2})(\sqrt{3})$ and applying lemma 3 with $K=\mathbb{Q}(\sqrt{2})$ and $\alpha=\sqrt{3}$, we construct an automorphism σ_{3} of L which is identity on $\mathbb{Q}(\sqrt{2})$ and takes $\sqrt{3}$ to $-\sqrt{3}$. Similarly, using the tower $\mathbb{Q} \subset \mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\sqrt{3})(\sqrt{2})$ we construct an automorphism σ_{2} of L which is
identity on $\mathbb{Q}(\sqrt{3})$ and takes $\sqrt{2}$ to $-\sqrt{2}$. It is easy to see (by considering the action on the set $\{\sqrt{2}, \sqrt{3}\}$) that σ_{2}, σ_{3} generate a four-element group isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. One always has $|\operatorname{Gal}(L / K)| \leq[L: K]$. Since $[L: K]=4$ and we already found 4 elements in the Galois group, we deduce that $\operatorname{Gal}(L / K) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

Problem 4.6. The extension L / K is normal since L is a splitting field of the polynomial $t^{n}-a$ over K. Indeed, if α is the image of t in $L=K[t] /\left(t^{n}-a\right)$ and $\zeta \in K$ is a primitive n-th root of unity then $t^{n}-a$ splits as the product $\prod_{i=0}^{n-1}\left(t-\alpha \zeta^{i}\right)$.

Let $\sigma \in \operatorname{Gal}(L / K)$. By lemma 1 , since α is a root of $t^{n}-a, \sigma(\alpha)$ must also be a root. Hence there exists $0 \leq i(\sigma)<n$ such that $\sigma(\alpha)=\alpha \zeta^{i(\sigma)}$.

The mapping $i: \operatorname{Gal}(L / K) \rightarrow \mathbb{Z} / n \mathbb{Z}$ is a group homomorphism; if $\sigma, \tau \in$ $\operatorname{Gal}(L / K)$ then $\alpha \zeta^{i(\sigma \tau)}=\sigma \tau(\alpha)=\sigma\left(\alpha \zeta^{i(\tau)}\right)=\sigma(\alpha) \zeta^{i(\tau)}=\alpha \zeta^{i(\sigma)} \zeta^{i(\tau)}=$ $\alpha \zeta^{i(\sigma)+i(\tau)}$ (note that powers of ζ are in K so the automorphisms acts trivially on them). It is one-to-one since an automorphism is determined by its action on α (lemma 2). Is it onto since by lemma 3 applied to the irreducible polynomial $t^{n}-a$, one can find an automorphism of L / K mapping α to any other root $\alpha \zeta^{i}$.

Problem 4.7. (a) The polynomial $t^{5}-2$ is irreducible in $\mathbb{Q}[t]$ by Eisenstein's criterion with the prime 2.
(b) Denote by M the splitting field of $t^{5}-2$ over \mathbb{Q}. Let $\zeta \in \mathbb{C}$ be a fifth root of unity. The roots of $t^{5}-2$ are $\zeta^{i} \sqrt[5]{2}$ for $0 \leq i<5$. Let's prove that $M=\mathbb{Q}(\sqrt[5]{2}, \zeta)$. First $M \subseteq \mathbb{Q}(\sqrt[5]{2}, \zeta)$ because M is generated by the roots $\zeta \sqrt[5]{2}$ which lie in $\mathbb{Q}(\sqrt[5]{2}, \zeta)$. For the opposite inclusion, note that $\zeta=(\zeta \sqrt[5]{2}) / \sqrt[5]{2}$ is a ratio of two roots of $t^{5}-2$ hence lies in M.
(c) Let $L=\mathbb{Q}(\sqrt[5]{2})$. By the irreducibility of $t^{5}-2$ we have $[L: \mathbb{Q}]=5$. We also have $[\mathbb{Q}(\zeta): \mathbb{Q}]=4$ (see Problem 4.3). Since M contains both fields, by the product formula the degree $[M: \mathbb{Q}]$ must be divisible by both 4 and 5 , hence divisible by 20 . On the other hand $[L(\zeta): L] \leq 4$ because ζ is a root of $x^{4}+x^{3}+x^{2}+x+1$ so its minimal polynomial over L is of degree at most 4 , so that $[M: \mathbb{Q}]=[L(\zeta): L][L: \mathbb{Q}] \leq 4 \cdot 5=20$. We deduce that $[M: \mathbb{Q}]=20$.
(d) The extension L / \mathbb{Q} is not normal, because the polynomial $t^{5}-2$ has a root $\sqrt[5]{2}$ in L but its other roots are not in L (if there were in L we would have $M=L$ which is impossible by counting degrees).

