HOMEWORK \#5 SOLUTIONS TO SELECTED PROBLEMS

Problem 5.3 - Construction of finite fields. Let p be a prime and let \mathbb{F}_{p} be the field with p elements. Let $r \geq 1$ be an integer and set $q=p^{r}$. We will construct a field with q elements and prove its uniqueness (up to an isomorphism).
(a) Consider the polynomial $Q(t)=t^{q}-t$. Let M be a splitting field of Q over \mathbb{F}_{p}. Define a subset $N \subseteq M$ as the set of roots of Q in M, that is,

$$
N=\{x \in M: Q(x)=0\}
$$

Lemma 1. N is a subfield of M containing \mathbb{F}_{p}.
Proof. If $x \in \mathbb{F}_{p}$ then $x^{p}=x$ and in particular $x^{p^{r}}=x$, hence $Q(x)=x$ so that $\mathbb{F}_{p} \subseteq N$.

If $x, y \in N$ then $x^{q}=x$ and $y^{q}=y$. It follows that $(x y)^{q}=x^{q} y^{q}=x y$ so that $x y \in N$. A similar argument shows that $x^{-1} \in N$ for $0 \neq x \in N$. Moreover, since $(x+y)^{p}=x^{p}+y^{p}$ and q is a power of p, one has $(x+y)^{q}=$ $x^{q}+y^{q}=x+y$ so that $x+y \in N$. Hence N is a subfield.

Since N is a subfield of M that contains \mathbb{F}_{p} and all the roots of Q (by its definition), by the minimality of M as a splitting field of Q over \mathbb{F}_{p} we see that $N=M$. We deduce that M consists of the roots of $Q(t)$ over \mathbb{F}_{p}.
Lemma 2. $|M|=q$.
Proof. By the last remark, it is enough to show that $Q(t)$ has precisely q roots in its splitting field. Now $\operatorname{deg} Q=q$ so we need to verify that there are no multiple roots. We do this by considering the g.c.d $\left(Q, Q^{\prime}\right)$ and showing it is equal to 1 . Indeed, for $Q(t)=t^{q}-t$ one has $Q^{\prime}(t)=q t^{q-1}-1=-1$.
(b) If K is a finite field with q elements, the multiplicative group K^{\times} has $q-1$ elements. It follows that for any $x \in K^{\times}, x^{q-1}=1$. Multiplying by x we get $x^{q}=x$ (or $Q(x)=0$) for all $x \in K$. Since $\operatorname{deg} Q=q$ we see that the elements of K are all the roots of Q over \mathbb{F}_{p}. In addition, since K has characteristic p, it contains \mathbb{F}_{p} as its prime field (take $1,1+1, \ldots$). We conclude that K is a splitting field of Q over \mathbb{F}_{p}.
(c) The existence of a field with $q=p^{r}$ elements was proved in (a); just take the splitting field of $t^{q}-t$ over \mathbb{F}_{p}. The uniqueness follows from the claim in (b) that any such field is a splitting field of $Q(t)$ over \mathbb{F}_{p}, and the fact that a splitting field is unique up to an isomorphism.

Problem 5.4 - Galois groups of finite fields. Let K be a finite field with q elements and L / K be a finite extension, $[L: K]=n$.
(a) If K has characteristic p then it contains \mathbb{F}_{p} as a subfield. Therefore we can view K as a vector space over \mathbb{F}_{p}. Since K is finite, the dimension is finite, say $r \geq 1$, and $|K|=p^{r}$.
(b) By the same reasoning, L is a vector space over K of dimension n, so that $|L|=|K|^{n}=q^{n}$.
(c) Define a map $F: L \rightarrow L$ by $F(x)=x^{q}$ for $x \in L$. The fact that F is a field homomorphism was shown in lemma 1 above. We know that $x^{q}=x$ for all $x \in K$ (because K is a field with q elements, see (b) of the previous problem), hence F acts as identity on K so that F is a K-homomorphism. Finally, view F as a K-linear map $L \rightarrow L$. Since it is one-to-one (any field homomorphism is such) and the dimension $[L: K]$ is finite, it follows that F is also onto. We deduce that F is a K-isomorphism.
(d) Let $0 \leq i$. Then $F^{i}(x)=x^{q^{i}}$ for $x \in L$. If $0<i<n$ then $F^{i}=i d_{L}$ implies that all elements of L are roots of the polynomial $t^{q^{i}}-t$ over \mathbb{F}_{p}, which has degree q^{i}. But $|L|=q^{n}>q^{i}$ so this is impossible. For $i=n$, since $|L|=q^{n}$ we already know that elements of L are (the) roots of $t^{q^{n}}-t$ so that F^{n} is identity on L.
(e) The previous paragraph shows that $C=\left\{i d_{L}, F, \ldots, F^{n-1}\right\}$ is a cyclic subgroup of order n of $\operatorname{Gal}(L / K)$ generated by F. But one always has $|\operatorname{Gal}(L / K)| \leq[L: K]=n$. It follows that $\operatorname{Gal}(L / K)=C$ is cyclic of order n, generated by F.

