HOMEWORK #5 SOLUTIONS TO SELECTED PROBLEMS

Problem 5.3 – Construction of finite fields. Let p be a prime and let \mathbb{F}_p be the field with p elements. Let $r \ge 1$ be an integer and set $q = p^r$. We will construct a field with q elements and prove its uniqueness (up to an isomorphism).

(a) Consider the polynomial $Q(t) = t^q - t$. Let M be a splitting field of Q over \mathbb{F}_p . Define a subset $N \subseteq M$ as the set of roots of Q in M, that is,

$$N = \{ x \in M : Q(x) = 0 \}$$

Lemma 1. N is a subfield of M containing \mathbb{F}_p .

Proof. If $x \in \mathbb{F}_p$ then $x^p = x$ and in particular $x^{p^r} = x$, hence Q(x) = x so that $\mathbb{F}_p \subseteq N$.

If $x, y \in N$ then $x^q = x$ and $y^q = y$. It follows that $(xy)^q = x^q y^q = xy$ so that $xy \in N$. A similar argument shows that $x^{-1} \in N$ for $0 \neq x \in N$. Moreover, since $(x+y)^p = x^p + y^p$ and q is a power of p, one has $(x+y)^q = x^q + y^q = x + y$ so that $x + y \in N$. Hence N is a subfield. \Box

Since N is a subfield of M that contains \mathbb{F}_p and all the roots of Q (by its definition), by the minimality of M as a splitting field of Q over \mathbb{F}_p we see that N = M. We deduce that M consists of the roots of Q(t) over \mathbb{F}_p .

Lemma 2. |M| = q.

Proof. By the last remark, it is enough to show that Q(t) has precisely q roots in its splitting field. Now deg Q = q so we need to verify that there are no multiple roots. We do this by considering the g.c.d (Q, Q') and showing it is equal to 1. Indeed, for $Q(t) = t^q - t$ one has $Q'(t) = qt^{q-1} - 1 = -1$. \Box

(b) If K is a finite field with q elements, the multiplicative group K^{\times} has q-1 elements. It follows that for any $x \in K^{\times}$, $x^{q-1} = 1$. Multiplying by x we get $x^q = x$ (or Q(x) = 0) for all $x \in K$. Since deg Q = q we see that the elements of K are all the roots of Q over \mathbb{F}_p . In addition, since K has characteristic p, it contains \mathbb{F}_p as its prime field (take 1, 1 + 1, ...). We conclude that K is a splitting field of Q over \mathbb{F}_p .

(c) The existence of a field with $q = p^r$ elements was proved in (a); just take the splitting field of $t^q - t$ over \mathbb{F}_p . The uniqueness follows from the claim in (b) that any such field is a splitting field of Q(t) over \mathbb{F}_p , and the fact that a splitting field is unique up to an isomorphism.

Problem 5.4 – Galois groups of finite fields. Let K be a finite field with q elements and L/K be a finite extension, [L:K] = n.

(a) If K has characteristic p then it contains \mathbb{F}_p as a subfield. Therefore we can view K as a vector space over \mathbb{F}_p . Since K is finite, the dimension is finite, say $r \geq 1$, and $|K| = p^r$.

(b) By the same reasoning, L is a vector space over K of dimension n, so that $|L| = |K|^n = q^n$.

(c) Define a map $F: L \to L$ by $F(x) = x^q$ for $x \in L$. The fact that F is a field homomorphism was shown in lemma 1 above. We know that $x^q = x$ for all $x \in K$ (because K is a field with q elements, see (b) of the previous problem), hence F acts as identity on K so that F is a K-homomorphism. Finally, view F as a K-linear map $L \to L$. Since it is one-to-one (any field homomorphism is such) and the dimension [L:K] is finite, it follows that F is also onto. We deduce that F is a K-isomorphism.

(d) Let $0 \leq i$. Then $F^i(x) = x^{q^i}$ for $x \in L$. If 0 < i < n then $F^i = id_L$ implies that all elements of L are roots of the polynomial $t^{q^i} - t$ over \mathbb{F}_p , which has degree q^i . But $|L| = q^n > q^i$ so this is impossible. For i = n, since $|L| = q^n$ we already know that elements of L are (the) roots of $t^{q^n} - t$ so that F^n is identity on L.

(e) The previous paragraph shows that $C = \{id_L, F, \ldots, F^{n-1}\}$ is a cyclic subgroup of order n of $\operatorname{Gal}(L/K)$ generated by F. But one always has $|\operatorname{Gal}(L/K)| \leq [L:K] = n$. It follows that $\operatorname{Gal}(L/K) = C$ is cyclic of order n, generated by F.