HOMEWORK \#7 SOLUTIONS TO SELECTED PROBLEMS

Problem 7.1 - Separability of towers. We prove the following:
Proposition 1. Let L / K be a finite extension and let $K \subseteq F \subseteq L$ be an intermediate field. Then L / K is separable if and only if L / F and F / K are separable.

Proof. First, assume that L / K is separable. Then any $\alpha \in L$ is separable over K. In particular, this it true for any $\alpha \in F$, so that F / K is separable. Let $\alpha \in L$. Then the minimal polynomial of α over F divides the minimal polynomial of α over K, which is separable. It follows that α is separable also over F and that L / F is separable.

Now assume that L / F and F / K are separable. We use the following fact about separability for finite extensions:

Fact: L / K is separable if and only if $[L: K]=[L: K]_{s}$.
Now $[L: K]=[L: F][F: K]$ and $[L: K]_{s}=[L: F]_{s}[F: K]_{s}$. Using the fact above we see that $[L: F]=[L: F]_{s}$ and $[F: K]=[F: K]_{s}$ hence $[L: K]=[L: K]_{s}$ so that L / K is separable.
Problem 7.2 - Separability of the composite; maximal separable extension.

Lemma 1. Let α be algebraic over K. Then $K(\alpha) / K$ is separable if and only if α is separable over K.

I will not prove the lemma, but will show how it follows from the fact. Just note that if $f \in K[t]$ is the minimal polynomial of α over K, then $[K(\alpha): K]$ is the degree of f, and $[K(\alpha): K]_{s}$ is the number of distinct roots of f in an algebraic closure \bar{K}. These two numbers coincide if and only if f is separable.

Lemma 2. Let $\alpha_{1}, \ldots, \alpha_{n}$ be algebraic over K. Then $K\left(\alpha_{1}, \ldots, \alpha_{n}\right) / K$ is separable if and only if $\alpha_{1}, \ldots, \alpha_{n}$ are separable over K.

Proof. We assume $\alpha_{1}, \ldots, \alpha_{n}$ are separable over K (the other direction is trivial). The proof is by induction on n, the case $n=1$ treated in lemma 1 We consider the tower

$$
K \subseteq K\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \subseteq K\left(\alpha_{1}, \ldots, \alpha_{n-1}, \alpha_{n}\right)=K\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\left(\alpha_{n}\right)
$$

Then $K\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) / K$ is separable by the induction hypothesis. Now α_{n} is separable over K, hence also over the larger field $K\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ (the minimal polynomial over the larger field divides the minimal polynomial over $K)$. By lemma 1 we see that $K\left(\alpha_{1}, \ldots, \alpha_{n-1}, \alpha_{n}\right) / K\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ is separable, and by proposition 1 we conclude that $K\left(\alpha_{1}, \ldots, \alpha_{n}\right) / K$ is separable.

Corollary. Let α, β be separable over K. Then $\alpha+\beta, \alpha \beta$ are also separable over K.

Proof. By the previous lemma, the extension $K(\alpha, \beta) / K$ is separable. In particular, $\alpha+\beta, \alpha \beta \in K(\alpha, \beta)$ are separable over K.
Proposition 2. Let $K \subseteq E, F \subseteq L$ be extensions. The the composite $E F / K$ is separable if and only if E / K and F / K are separable.

Proof. If $E F / K$ is separable, then each of $E / K, F / K$ is separable being a subfield of $E F$. Conversely, write $E=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Then $E F=$ $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
By lemma 2, each of $\alpha_{1}, \ldots, \alpha_{n}$ is separable over K, and hence over F. By the same lemma, $E F / F=F\left(\alpha_{1}, \ldots, \alpha_{n}\right) / F$ is separable, so by proposition 1 for the tower $K \subseteq F \subseteq E F$ we see that $E F / K$ is separable.

Proposition 3. Let L / K be a finite extension and let

$$
L_{s}=\{\alpha \in L: \alpha \text { is separable over } K\}
$$

Then L_{s} is a subfield of L, the extension L_{s} / K is separable and the extension L / L_{s} is totally inseparable. In particular, $\left[L_{s}: K\right]=[L: K]_{s}$.
Proof. The fact that L_{s} is a field follows from the corollary after lemma 2. Since L_{s} consists of separable elements over K, the extension L_{s} / K is separable, so that $\left[L_{s}: K\right]=\left[L_{s}: K\right]_{s}$. Now by $[L: K]_{s}=\left[L: L_{s}\right]_{s}\left[L_{s}\right.$: $K]_{s}=\left[L: L_{s}\right]_{s}\left[L_{s}: K\right]$ we see that $\left[L_{s}: K\right]=[L: K]_{s}$ is equivalent to $\left[L: L_{s}\right]_{s}=1$.

If K is of characteristic zero, that $L_{s}=L$ so that $\left[L_{s}: L\right]_{s} \leq\left[L_{s}: L\right]=1$ and there is nothing to prove. So assume K is of characteristic p. Let $\alpha \in L$. By the corollary of the next lemma (see below), there exists $e \geq 0$ such that $a:=\alpha^{p^{e}} \in L_{s}$. We see that α is a root of the polynomial $t^{p^{e}}-a \in L_{s}[t]$, hence any embedding of L / L_{s} to an algebraic closure must take α to a root. But the polynomial splits as $t^{p^{e}}-a=t^{p^{e}}-\alpha^{p^{e}}=(t-\alpha)^{p^{e}}$ so that the only root is α. Hence any embedding must take α to itself. As this was true for any $\alpha \in L$, we conclude that $\left[L: L_{s}\right]_{s}=1$.

Lemma 3. Assume char $K=p$ and let $f \in K[t]$ be an irreducible polynomial. Then there exist an integer $e \geq 0$ and an irreducible separable polynomial $h \in K[t]$ such that $f(t)=h\left(f^{p^{e}}\right)$.
Proof. If f is separable over K, take $e=0$ and $h=f$. Otherwise, $\left(f, f^{\prime}\right) \neq 1$ and f is irreducible, so we must have $f^{\prime}=0$. Write $f(t)=\sum_{i} c_{i} t^{i}$. Then $f^{\prime}(t)=\sum_{i} i c_{i} t^{i-1}=0$. It follows that $c_{i}=0$ for all i not divisible by p. In other words, $f(t)=c_{0}+c_{p} t^{p}+c_{2 p} t^{2 p}+\cdots=g\left(t^{p}\right)$ where $g(s)=$ $c_{0}+c_{p} s+c_{2 p} s^{2}+\ldots g$ is irreducible, because any factorization of g gives rise to a factorization of f by $f(t)=g\left(t^{p}\right)$.

If g is separable, take $e=1$ and $h=g$. Otherwise, one may continue the process and at any stage extract an exponent of p from the polynomial. Since the degree is divided by p at each stage, the process must eventually stop. This means that we finally get an irreducible polynomial $h \in K[t]$ which is not of the form $h(t)=h_{1}\left(t^{p}\right)$, so h is separable. The number $e \geq 0$ is the number of steps needed to get h.

Corollary. Assume char $K=p$. If L / K is a finite extension and $\alpha \in L$, there exists $e \geq 0$ such that $\alpha^{p^{e}}$ is separable over K.

Proof. Let $f \in K[t]$ be the minimal polynomial of α, and write $f(t)=h\left(t^{p^{e}}\right)$ for $e \geq 0$ and $h \in K[t]$ irreducible and separable. Then $0=f(\alpha)=h\left(\alpha^{p^{e}}\right)$, so that $\alpha^{p^{e}}$ is a root of the separable irreducible polynomial $h \in K[t]$ and therefore $\alpha^{p^{e}}$ is separable over K.

Problem 7.3. $\left(\mathbf{P}_{\mathbf{2}} \Rightarrow \mathbf{P}_{\mathbf{3}}\right)$ Let $\alpha \in L$ be totally inseparable. Then $\alpha^{p^{n}} \in K$ for some $n \geq 0$, so α is a root of the polynomial $t^{p^{n}}-a \in K[t]$ for $a=\alpha^{p^{n}}$. This polynomial factorizes (over $L[t]$) as $t^{p^{n}}-a=t^{p^{n}}-\alpha^{p^{n}}=(t-\alpha)^{p^{n}}$, so any irreducible factor of it (in $K[t]$) is of the form $(t-\alpha)^{j}$.

Write $j=p^{i} r$ where $(p, r)=1$, and assume that $(t-\alpha)^{p^{i} r} \in K[t]$ is an irreducible factor. Then $(t-\alpha)^{p^{i} r}=\left(t^{p^{i}}-\alpha^{p^{i}}\right)^{r}=t^{p^{i} r}-r \alpha^{p^{i}} t^{p^{i}(r-1)}+\cdots \in$ $K[t]$. Since r is not divisible by p, it follows that $\alpha^{p^{i}} \in K$, so $(t-\alpha)^{p^{i}}=$ $t^{p^{i}}-\alpha^{p^{i}} \in K[t]$, hence $r=1$ and the minimal polynomial is of the form $t^{p^{i}}-b$ for some $b \in K$.
$\left(\mathbf{P}_{\mathbf{3}} \Rightarrow \mathbf{P}_{\mathbf{4}}\right)$ Trivial; just take any generators $\alpha_{1}, \ldots, \alpha_{n}$ such that $L=$ $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. By P_{3}, the minimal polynomial of each α_{j} is $t^{p^{n_{j}}}-a_{j}$ so α_{j} is totally inseparable over K.

Problem 7.4.

(a) The polynomial $t^{4}-2$ is irreducible over \mathbb{Q} by Eisenstein's criterion with the prime 2. Hence, if α is a positive fourth root of 2 and $L=\mathbb{Q}(\alpha)$, $[L: \mathbb{Q}]=4$.
(b) The roots of $t^{4}-2$ in \mathbb{C} are $\alpha, i \alpha,-\alpha,-i \alpha$, and the splitting field M generated by them over \mathbb{Q} is equal to $L(i)$; it is obviously contained in $L(i)$, the other inclusion follows from $i=(i \alpha) / \alpha \in M$.
(c) Since $L \subset \mathbb{R}$ (because $\alpha \in \mathbb{R}$) and $i \notin \mathbb{R}$, it follows that $L \neq L(i)$. On the other hand, i is a root of $t^{2}+1$ so that $[L(i): L] \leq 2$. Therefore $[L(i): L]=2$, hence $[M: \mathbb{Q}]=[M: L][L: \mathbb{Q}]=2 \cdot 4=8$. Now $8=[M:$ $\mathbb{Q}]=[M: \mathbb{Q}(i)][\mathbb{Q}(i): \mathbb{Q}]$. Since $[\mathbb{Q}(i): \mathbb{Q}]=2$, we have $[M: \mathbb{Q}(i)]=4$. But $M=\mathbb{Q}(i, \alpha)$ so that $[M: \mathbb{Q}(i)]=4$ is the degree of the minimal polynomial of α over $\mathbb{Q}(i)$. But α is a root of $t^{4}-2$. It follows that this is the minimal polynomial; in other words, $t^{4}-2$ stays irreducible over $\mathbb{Q}(i)$.
(d) Consider $M / \mathbb{Q}(i)$. This is a normal extension since M / \mathbb{Q} is normal (as a splitting field). The elements $\alpha, i \alpha \in M$ are two roots of the irreducible polynomial $t^{4}-2 \in \mathbb{Q}(i)[t]$ (by (c)), hence there exists an automorphism $\sigma \in \operatorname{Gal}(M / \mathbb{Q}(i))$ taking α to $i \alpha$. In particular, $\sigma \in \operatorname{Gal}(M / \mathbb{Q})$ with $\sigma(i)=$ $i, \sigma(\alpha)=i \alpha$.
(e) A simple calculation shows that $\sigma^{r}(\alpha)=i^{r} \alpha$ and $\sigma^{r}(i)=i$, hence σ is of order 4 .
(f) Analogously to (d), M / L is normal and $i,-i$ are roots of the irreducible polynomial $t^{2}+1 \in L[t]$ (because $[L(i): L]=2$), so there exists $\tau \in$ $\operatorname{Gal}(M / L)$ taking i to $-i$. Viewing $\tau \in \operatorname{Gal}(M / \mathbb{Q})$, we have $\tau(\alpha)=\alpha$, $\tau(i)=-i$.
(g) It is enough to consider the values of the automorphisms on i and α, as M is generated by these two elements. We calculate:

$$
\begin{array}{ll}
\tau \sigma(i)=\tau(i)=-i & \sigma^{3} \tau(i)=\sigma^{3}(-i)=-i \\
\tau \sigma(\alpha)=\tau(i \alpha)=\tau(i) \tau(\alpha)=-i \alpha & \sigma^{3} \tau(\alpha)=\sigma^{3}(\alpha)=-i \alpha
\end{array}
$$

(h) Using the relation $\tau \sigma=\sigma^{3} \tau$ one can transform any word in σ, τ to the form $\sigma^{i} \tau^{j}$ (move σ to the left as σ^{3}). Since $\sigma^{4}=1, \tau^{2}=1$, one can assume $0 \leq i<4,0 \leq j<2$, so the group generated by σ, τ and the relations is of size at most 8 . One can verify that it is exactly 8 , because if $\sigma^{i} \tau^{j}=\sigma^{i^{\prime}} \tau^{j^{\prime}}$ then $\sigma^{-i^{\prime}+i}=\tau^{j^{\prime}-j}$ hence $i=i^{\prime}$ and $j=j^{\prime}$. On the other hand, $\operatorname{Gal}(M / \mathbb{Q})=[M: \mathbb{Q}]=8$ and we see that the group generated by σ, τ exhausts the Galois group.

Problem 7.5. Let $\alpha \in \bar{K}$ be algebraic over K. If α is not separable, let f be its minimal polynomial over K. Then f is not separable, and as in the proof of lemma 3 , we can write $f(t)=g\left(t^{p}\right)$ for irreducible $g \in K[t]$. In particular, $\operatorname{deg} f=p \operatorname{deg} g$. Now $0=f(\alpha)=g\left(\alpha^{p}\right)$, and since f, g are irreducible we have $[K(\alpha): K]=\operatorname{deg} f=p \operatorname{deg} g$ and $\left[K\left(\alpha^{p}\right): K\right]=\operatorname{deg} g$, so $K\left(\alpha^{p}\right) \varsubsetneqq K(\alpha)$.

Conversely, if $K\left(\alpha^{p}\right) \varsubsetneqq K(\alpha)$, write $a:=\alpha^{p}$ so that α is a root of $t^{p}-a \in$ $K\left(\alpha^{p}\right)[t]$. But this polynomial is not separable, since it splits as $t^{p}-a=$ $t^{p}-\alpha^{p}=(t-\alpha)^{p}$. It is irreducible, since any factor must be of the form $(t-\alpha)^{r} \in K\left(\alpha^{p}\right)[t]$, but the coefficient of t^{r-1} is $-r \alpha \in K\left(\alpha^{p}\right)$ so by $\alpha \notin$ $K\left(\alpha^{p}\right)$ (by assumption) we must have $r=p$.

We see that α is not separable over $K\left(\alpha^{p}\right)$, a fortiori it is not separable over K.

