
HOMEWORK #7
SOLUTIONS TO SELECTED PROBLEMS

Problem 7.1 – Separability of towers. We prove the following:

Proposition 1. Let L/K be a finite extension and let K ⊆ F ⊆ L be an
intermediate field. Then L/K is separable if and only if L/F and F/K are
separable.

Proof. First, assume that L/K is separable. Then any α ∈ L is separable
over K. In particular, this it true for any α ∈ F , so that F/K is separable.
Let α ∈ L. Then the minimal polynomial of α over F divides the minimal
polynomial of α over K, which is separable. It follows that α is separable
also over F and that L/F is separable.

Now assume that L/F and F/K are separable. We use the following fact
about separability for finite extensions:

Fact: L/K is separable if and only if [L : K] = [L : K]s.

Now [L : K] = [L : F ][F : K] and [L : K]s = [L : F ]s[F : K]s. Using
the fact above we see that [L : F ] = [L : F ]s and [F : K] = [F : K]s hence
[L : K] = [L : K]s so that L/K is separable. ¤

Problem 7.2 – Separability of the composite; maximal separable
extension.

Lemma 1. Let α be algebraic over K. Then K(α)/K is separable if and
only if α is separable over K.

I will not prove the lemma, but will show how it follows from the fact.
Just note that if f ∈ K[t] is the minimal polynomial of α over K, then
[K(α) : K] is the degree of f , and [K(α) : K]s is the number of distinct
roots of f in an algebraic closure K̄. These two numbers coincide if and
only if f is separable.

Lemma 2. Let α1, . . . , αn be algebraic over K. Then K(α1, . . . , αn)/K is
separable if and only if α1, . . . , αn are separable over K.

Proof. We assume α1, . . . , αn are separable over K (the other direction is
trivial). The proof is by induction on n, the case n = 1 treated in lemma 1
We consider the tower

K ⊆ K(α1, . . . , αn−1) ⊆ K(α1, . . . , αn−1, αn) = K(α1, . . . , αn−1)(αn)

Then K(α1, . . . , αn−1)/K is separable by the induction hypothesis. Now αn

is separable over K, hence also over the larger field K(α1, . . . , αn−1) (the
minimal polynomial over the larger field divides the minimal polynomial
over K). By lemma 1 we see that K(α1, . . . , αn−1, αn)/K(α1, . . . , αn−1)
is separable, and by proposition 1 we conclude that K(α1, . . . , αn)/K is
separable. ¤
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Corollary. Let α, β be separable over K. Then α+β, αβ are also separable
over K.

Proof. By the previous lemma, the extension K(α, β)/K is separable. In
particular, α + β, αβ ∈ K(α, β) are separable over K. ¤
Proposition 2. Let K ⊆ E, F ⊆ L be extensions. The the composite EF/K
is separable if and only if E/K and F/K are separable.

Proof. If EF/K is separable, then each of E/K, F/K is separable being
a subfield of EF . Conversely, write E = K(α1, . . . , αn). Then EF =
F (α1, . . . , αn).

By lemma 2, each of α1, . . . , αn is separable over K, and hence over F . By
the same lemma, EF/F = F (α1, . . . , αn)/F is separable, so by proposition 1
for the tower K ⊆ F ⊆ EF we see that EF/K is separable. ¤
Proposition 3. Let L/K be a finite extension and let

Ls = {α ∈ L : α is separable over K}
Then Ls is a subfield of L, the extension Ls/K is separable and the extension
L/Ls is totally inseparable. In particular, [Ls : K] = [L : K]s.

Proof. The fact that Ls is a field follows from the corollary after lemma 2.
Since Ls consists of separable elements over K, the extension Ls/K is sep-
arable, so that [Ls : K] = [Ls : K]s. Now by [L : K]s = [L : Ls]s[Ls :
K]s = [L : Ls]s[Ls : K] we see that [Ls : K] = [L : K]s is equivalent to
[L : Ls]s = 1.

If K is of characteristic zero, that Ls = L so that [Ls : L]s ≤ [Ls : L] = 1
and there is nothing to prove. So assume K is of characteristic p. Let α ∈ L.
By the corollary of the next lemma (see below), there exists e ≥ 0 such that
a := αpe ∈ Ls. We see that α is a root of the polynomial tp

e − a ∈ Ls[t],
hence any embedding of L/Ls to an algebraic closure must take α to a root.
But the polynomial splits as tp

e − a = tp
e −αpe

= (t−α)pe
so that the only

root is α. Hence any embedding must take α to itself. As this was true for
any α ∈ L, we conclude that [L : Ls]s = 1. ¤
Lemma 3. Assume charK = p and let f ∈ K[t] be an irreducible poly-
nomial. Then there exist an integer e ≥ 0 and an irreducible separable
polynomial h ∈ K[t] such that f(t) = h(fpe

).

Proof. If f is separable over K, take e = 0 and h = f . Otherwise, (f, f ′) 6= 1
and f is irreducible, so we must have f ′ = 0. Write f(t) =

∑
i cit

i. Then
f ′(t) =

∑
i icit

i−1 = 0. It follows that ci = 0 for all i not divisible by
p. In other words, f(t) = c0 + cpt

p + c2pt
2p + · · · = g(tp) where g(s) =

c0 + cps + c2ps
2 + . . . . g is irreducible, because any factorization of g gives

rise to a factorization of f by f(t) = g(tp).
If g is separable, take e = 1 and h = g. Otherwise, one may continue

the process and at any stage extract an exponent of p from the polynomial.
Since the degree is divided by p at each stage, the process must eventually
stop. This means that we finally get an irreducible polynomial h ∈ K[t]
which is not of the form h(t) = h1(tp), so h is separable. The number e ≥ 0
is the number of steps needed to get h. ¤
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Corollary. Assume charK = p. If L/K is a finite extension and α ∈ L,
there exists e ≥ 0 such that αpe

is separable over K.

Proof. Let f ∈ K[t] be the minimal polynomial of α, and write f(t) = h(tp
e
)

for e ≥ 0 and h ∈ K[t] irreducible and separable. Then 0 = f(α) = h(αpe
),

so that αpe
is a root of the separable irreducible polynomial h ∈ K[t] and

therefore αpe
is separable over K. ¤

Problem 7.3. (P2 ⇒ P3) Let α ∈ L be totally inseparable. Then αpn ∈ K
for some n ≥ 0, so α is a root of the polynomial tp

n − a ∈ K[t] for a = αpn
.

This polynomial factorizes (over L[t]) as tp
n − a = tp

n − αpn
= (t− α)pn

, so
any irreducible factor of it (in K[t]) is of the form (t− α)j .

Write j = pir where (p, r) = 1, and assume that (t − α)pir ∈ K[t] is an
irreducible factor. Then (t−α)pir = (tp

i −αpi
)r = tp

ir − rαpi
tp

i(r−1) + · · · ∈
K[t]. Since r is not divisible by p, it follows that αpi ∈ K, so (t − α)pi

=
tp

i − αpi ∈ K[t], hence r = 1 and the minimal polynomial is of the form
tp

i − b for some b ∈ K.
(P3 ⇒ P4) Trivial; just take any generators α1, . . . , αn such that L =

K(α1, . . . , αn). By P3, the minimal polynomial of each αj is tp
nj − aj so αj

is totally inseparable over K.

Problem 7.4.

M = Q(α, i)
2
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(a) The polynomial t4 − 2 is irreducible over Q by Eisenstein’s criterion
with the prime 2. Hence, if α is a positive fourth root of 2 and L = Q(α),
[L : Q] = 4.

(b) The roots of t4 − 2 in C are α, iα,−α,−iα, and the splitting field M
generated by them over Q is equal to L(i); it is obviously contained in L(i),
the other inclusion follows from i = (iα)/α ∈ M .

(c) Since L ⊂ R (because α ∈ R) and i 6∈ R, it follows that L 6= L(i).
On the other hand, i is a root of t2 + 1 so that [L(i) : L] ≤ 2. Therefore
[L(i) : L] = 2, hence [M : Q] = [M : L][L : Q] = 2 · 4 = 8. Now 8 = [M :
Q] = [M : Q(i)][Q(i) : Q]. Since [Q(i) : Q] = 2, we have [M : Q(i)] = 4. But
M = Q(i, α) so that [M : Q(i)] = 4 is the degree of the minimal polynomial
of α over Q(i). But α is a root of t4 − 2. It follows that this is the minimal
polynomial; in other words, t4 − 2 stays irreducible over Q(i).

(d) Consider M/Q(i). This is a normal extension since M/Q is normal
(as a splitting field). The elements α, iα ∈ M are two roots of the irreducible
polynomial t4 − 2 ∈ Q(i)[t] (by (c)), hence there exists an automorphism
σ ∈ Gal(M/Q(i)) taking α to iα. In particular, σ ∈ Gal(M/Q) with σ(i) =
i, σ(α) = iα.
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(e) A simple calculation shows that σr(α) = irα and σr(i) = i, hence σ
is of order 4.

(f) Analogously to (d), M/L is normal and i,−i are roots of the irreducible
polynomial t2 + 1 ∈ L[t] (because [L(i) : L] = 2), so there exists τ ∈
Gal(M/L) taking i to −i. Viewing τ ∈ Gal(M/Q), we have τ(α) = α,
τ(i) = −i.

(g) It is enough to consider the values of the automorphisms on i and α,
as M is generated by these two elements. We calculate:

τσ(i) = τ(i) = −i σ3τ(i) = σ3(−i) = −i

τσ(α) = τ(iα) = τ(i)τ(α) = −iα σ3τ(α) = σ3(α) = −iα

(h) Using the relation τσ = σ3τ one can transform any word in σ, τ to
the form σiτ j (move σ to the left as σ3). Since σ4 = 1, τ2 = 1, one can
assume 0 ≤ i < 4, 0 ≤ j < 2, so the group generated by σ, τ and the
relations is of size at most 8. One can verify that it is exactly 8, because
if σiτ j = σi′τ j′ then σ−i′+i = τ j′−j hence i = i′ and j = j′. On the other
hand, Gal(M/Q) = [M : Q] = 8 and we see that the group generated by
σ, τ exhausts the Galois group.

Problem 7.5. Let α ∈ K̄ be algebraic over K. If α is not separable, let
f be its minimal polynomial over K. Then f is not separable, and as in
the proof of lemma 3, we can write f(t) = g(tp) for irreducible g ∈ K[t].
In particular, deg f = p deg g. Now 0 = f(α) = g(αp), and since f, g are
irreducible we have [K(α) : K] = deg f = pdeg g and [K(αp) : K] = deg g,
so K(αp) $ K(α).

Conversely, if K(αp) $ K(α), write a := αp so that α is a root of tp−a ∈
K(αp)[t]. But this polynomial is not separable, since it splits as tp − a =
tp − αp = (t − α)p. It is irreducible, since any factor must be of the form
(t − α)r ∈ K(αp)[t], but the coefficient of tr−1 is −rα ∈ K(αp) so by α 6∈
K(αp) (by assumption) we must have r = p.

We see that α is not separable over K(αp), a fortiori it is not separable
over K.


