HOMEWORK \#8 SOLUTIONS TO SELECTED PROBLEMS

Problem 8.4 - Normality of the composite. Let $K \subset L_{1}, L_{2} \subset \bar{K}$ be two finite extensions.

Lemma 1. If L_{1} / K and L_{2} / K are normal, then so is their composite $L_{1} L_{2} / K$.

First proof. We know that a finite extension L / K is normal if and only if it is a splitting field (over K) of a polynomial $f \in K[t]$. So, by our assumptions, there exist polynomials $f_{1}, f_{2} \in K[t]$ such that L_{i} / K is a splitting field for $f_{i}(i=1,2)$. Now, the composite $L_{1} L_{2}$ is a splitting field of the product $f_{1} f_{2}$, hence $L_{1} L_{2} / K$ is normal.
Lemma 2. $\operatorname{Gal}\left(\bar{K} / L_{1} L_{2}\right)=\operatorname{Gal}\left(\bar{K} / L_{1}\right) \cap \operatorname{Gal}\left(\bar{K} / L_{2}\right)$.
Proof. If $\sigma \in \operatorname{Gal}\left(\bar{K} / L_{1} L_{2}\right)$ then it is the identity on $L_{1} L_{2}$ hence on the subfields L_{1} and L_{2}. This shows the inclusion \subseteq. In the other direction, if σ is an automorphism of \bar{K} and it is the identity on both L_{1}, L_{2} then it is the identity on $L_{1} L_{2}$ (to see this, write $L_{1}=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $L_{2}=$ $K\left(\beta_{1}, \ldots, \beta_{m}\right)$. Then $L_{1} L_{2}=K\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right)$ and $\sigma\left(\alpha_{i}\right)=\alpha_{i}$, $\sigma\left(\beta_{j}\right)=\beta_{j}$ for all $\left.i, j\right)$.
Lemma 3. A finite extension L / K is normal if and only if $\operatorname{Gal}(\bar{K} / L)$ is normal in $\operatorname{Gal}(\bar{K} / K)$.
Proof. Let $\sigma \in \operatorname{Gal}(\bar{K} / K)$. Then $\sigma(L)$ is a subfield of \bar{K}, and $\operatorname{Gal}(\bar{K} / \sigma(L))=$ $\sigma \operatorname{Gal}(\bar{K} / L) \sigma^{-1}$ (just check on elements, for example if $x \in \sigma(L)$ then $\sigma^{-1}(x) \in L$ hence for every $\tau \in \operatorname{Gal}(\bar{K} / L), \tau\left(\sigma^{-1}(x)\right)=\sigma^{-1}(x)$ so that $\sigma \tau \sigma^{-1}(x)=\sigma \sigma^{-1}(x)=x$ thus $\left.\sigma \tau \sigma^{-1} \in \operatorname{Gal}(\bar{K} / \sigma(L))\right)$.

By Galois theorem we see that all the subfields $\sigma(L)$ are equal to L if and only if all the subgroups $\sigma \operatorname{Gal}(\bar{K} / L) \sigma^{-1}$ are equal to $\operatorname{Gal}(\bar{K} / L)$. The latter condition is the definition of the normality of $\operatorname{Gal}(\bar{K} / L)$ in $\operatorname{Gal}(\bar{K} / K)$, while the former condition on L is equivalent to the normality of L / K.
Second proof of Lemma 1. Let $N_{i}=\operatorname{Gal}\left(\bar{K} / L_{i}\right)$. By lemma 3, N_{1}, N_{2} are normal in $G=\operatorname{Gal}(\bar{K} / K)$, hence $N=\operatorname{Gal}\left(\bar{K} / L_{1} L_{2}\right)=N_{1} \cap N_{2}$ (by lemma 2) is normal in G, so by lemma 3 again, $L_{1} L_{2} / K$ is normal.

Corollary. If $L_{1} / K, L_{2} / K$ are Galois, then $L_{1} L_{2} / K$ is Galois.
What can be said about the Galois group of the composite?
Lemma 4. If $L_{1} / K, L_{2} / K$ are Galois, then there is an embedding

$$
\operatorname{Gal}\left(L_{1} L_{2} / K\right) \hookrightarrow \operatorname{Gal}\left(L_{1} / K\right) \times \operatorname{Gal}\left(L_{2} / K\right)
$$

Proof. One can either construct the embedding directly by $\sigma \mapsto\left(\sigma_{\mid L_{1}}, \sigma_{\mid L_{2}}\right)$, or use the second proof of Lemma 1 and note the following two facts; first, if $N_{1}, N_{2} \triangleleft G$ then $G /\left(N_{1} \cap N_{2}\right) \hookrightarrow G / N_{1} \times G / N_{2}$. Second, for a Galois extension $L / K, \operatorname{Gal}(L / K)=\operatorname{Gal}(\bar{K} / K) / \operatorname{Gal}(\bar{K} / L)$.

Problem 8.5. Let K be a field with char $K \neq 2$. Let $a \in K$. Then the extension $K(\sqrt{a}) / K$ obtained by adjoining a square root of a is either of degree 1 (if $a=b^{2}$ for some $b \in K$) or of degree 2. Since the polynomial $t^{2}-a$ has derivative $2 t$ and char $K \neq 2$, the extension is separable. It is also normal (any extension of degree ≤ 2 is normal), hence Galois, and the Galois group is either trivial or $\mathbb{Z} / 2 \mathbb{Z}$.

Now let $a_{1}, \ldots, a_{n} \in K$ and consider the extension $K\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right) / K$. Since it is the composite of the extensions $K\left(\sqrt{a_{i}}\right) / K$ which are Galois, by the corollary before lemma 4 , it is Galois. By lemma 4 we also have

$$
G:=\operatorname{Gal}\left(K\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right) / K\right) \hookrightarrow \prod_{i=1}^{n} \operatorname{Gal}\left(K\left(\sqrt{a_{i}}\right) / K\right)
$$

Since each of the factors is either 1 or $\mathbb{Z} / 2 \mathbb{Z}$, we see that G is embedded in $(\mathbb{Z} / 2 \mathbb{Z})^{m}$ for some $m \leq n$. But $(\mathbb{Z} / 2 \mathbb{Z})^{m}$ can be viewed as an m-dimensional vector space over the field with 2 elements \mathbb{F}_{2}, and any subgroup is easily seen to be a vector subspace (hence as a vector space of lower dimension). Thus G is isomorphic to a vector space of dimension $r \leq m \leq n$ over \mathbb{F}_{2}, that is, $G \simeq(\mathbb{Z} / 2 \mathbb{Z})^{r}$.
Lemma. $\left[K\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right): K\right]=2^{n}$ if and only if none of the $2^{n}-1$ products $\prod_{i \in I} a_{i}$ (where I runs over all subsets $\phi \neq I \subseteq\{1,2, \ldots, n\}$) is a square of an element in K.
Proof. Let $L_{0}=K$ and $L_{i}=K\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{i}}\right)$ for $1 \leq i \leq n$. Then $L_{i}=$ $L_{i-1}\left(\sqrt{a_{i}}\right)$ so that $\left[L_{i}: L_{i-1}\right] \leq 2$ and $\left[L_{n}: K\right]=2^{n}$ if and only if $\left[L_{i}\right.$: $\left.L_{i-1}\right]=2$ for all $1 \leq i \leq n$.

Suppose that $\left[L_{n}: \bar{K}\right]=2^{n}$. Then $\left[L_{i}: L_{i-1}\right]=2$ for all $1 \leq i \leq n$ and $1, \sqrt{a_{i}}$ is a basis of L_{i} over L_{i-1}. It follows (Theorem 1.1, Product formula) that $\left\{\prod_{i \in I} \sqrt{a_{i}}\right\}_{I \subseteq\{1, \ldots, n\}}$ is a basis of L_{n} over K. Taking $I=\phi$ we see that $1 \in K$ is an element of the basis. Since the elements of the basis are independent over K, we see that $\prod_{i \in I} \sqrt{a_{i}} \notin K$ for all $\phi \neq I \subseteq\{1, \ldots, n\}$.

We prove the opposite direction by induction on n, the case $n=1$ being trivial. Since the condition on subsets is obviously satisfied for $\{1, \ldots, n-1\}$, by induction hypothesis we have $\left[L_{n-1}: K\right]=2^{n-1}$. We assume $\left[L_{n}\right.$: $\left.L_{n-1}\right]<2$ and arrive at a contradiction. Indeed, we have $L_{n}=L_{n-1}$ so that $\sqrt{a_{n}} \in L_{n-1}$. Now $\left\{1, \sqrt{a_{n-1}}\right\}$ is a basis of L_{n-1} / L_{n-2}, so we can write

$$
\sqrt{a_{n}}=A+B \sqrt{a_{n-1}}
$$

for unique $A, B \in L_{n-2}$. Squaring this, we see that

$$
a_{n}=\left(A^{2}+B^{2} a_{n-1}\right)+2 A B \sqrt{a_{n-1}}
$$

But $a_{n} \in K \subseteq L_{n-2}$, and since $\left\{1, \sqrt{a_{n-1}}\right\}$ is a basis of L_{n-1} / L_{n-2}, we must have that $2 A B=0$, so that $A=0$ or $B=0$.

If $B=0$, then $\sqrt{a_{n}}=A \in L_{n-2}$, but this is impossible as $\left[L_{n-2}\left(\sqrt{a_{n}}\right)\right.$: $\left.L_{n-2}\right]=2$ by the induction hypothesis on the set $a_{1}, \ldots, a_{n-2}, a_{n}$ (with $n-1$ elements).

If $A=0$, then $\sqrt{a_{n}}=B \sqrt{a_{n-1}}$ so that $\sqrt{a_{n-1} a_{n}} \in L_{n-2}$. But again this is impossible since $\left[L_{n-2}\left(\sqrt{a_{n-1} a_{n}}\right): L_{n-2}\right]=2$ by the induction hypothesis on the $n-1$ element set $a_{1}, \ldots, a_{n-1}, a_{n-1} a_{n}$ (all products are products of some a_{i}-s).

