
HOMEWORK #9
SOLUTIONS TO SELECTED PROBLEMS

Problem 9.5. Let K be of prime characteristic p, and let L/K be Galois
extension of degree p. Since [L : K] = p, the Galois group of L/K is cyclic
of order p. Let σ be a generator.

First reduction. Suppose that there exists α ∈ L such that σ(α) = α − 1.
Then obviously α 6∈ K and σi(α) = α−i for 0 ≤ i < p. Therefore NL/K(α) =
α · σ(α) · σ2(α) · . . . · σp−1(α) = α(α− 1)(α− 2) · . . . · (α− (p− 1)) = αp − α
is an element of K.

Note that the last equality follows from the factorization tp − t = t(t −
1) · . . . · (t− (p− 1)) that holds in Fp hence in any field of characteristic p.

Second reduction. Now suppose that there exists β ∈ L with TrL/K(β) = 1.
Let α ∈ L be the element

α = σ(β) + 2σ2(β) + · · ·+ (p− 1)σp−1(β)

Then

σ(α) = σ2(β) + 2σ3(β) + · · ·+ (p− 2)σp−1(β) + (p− 1)σp(β)

hence

α− σ(α) = σ(β) + σ2(β) + · · ·+ σp−1(β) + σp(β) = TrL/K(β) = 1

and we found α ∈ L with σ(α) = α− 1.

Finding β with TrL/K(β) = 1. This follows from the non-degeneracy of the
trace form. To prove this directly, we use the Dedekind theorem on the
linear dependence of automorphisms to deduce the existence of γ ∈ L such
that c = γ +σ(γ)+ · · ·+σp−1(γ) 6= 0. But c = TrL/K(γ), so taking β = γ/c
we have TrL/K(β) = TrL/K(γ)/c = 1.

Problem 9.6. Consider the polynomial f(t) = t4 + 30t2 + 45 over Q. It is
irreducible by Eisenstein criterion with the prime 5. Let α ∈ C be a root of
t and let L = Q(α).

We first show that [L : Q] = 4. Let β = α2. Then β is a root of the
polynomial u2 + 30u + 45. The roots of this polynomial are −15 ± 6

√
5

so Q(β) = Q(
√

5) hence [Q(β) : Q] = 2. Since α2 = β we have [Q(α) :
Q(β)] ≤ 2. To show that the degree equals 2 and not 1, it is enough to show
α 6∈ Q(

√
5).

Indeed, solving the equation (a + b
√

5)2 = −15 + 6
√

5 with a, b ∈ Q, we
see that a2 + 5b2 = −15 and 2ab = 6. Substituting back b = 3/a we get
a4 + 15a2 + 45 = 0 which has no solutions in Q (the polynomial is even
irreducible!). By multiplicity of degrees, [L : Q] = [Q(α) : Q(

√
5)][Q(

√
5) :

Q] = 2 · 2 = 4.
We now show that the other roots of f lie in L. By the previous computa-

tion, the roots are ±
√
−15± 6

√
5, and α =

√
−15 + 6

√
5 (arbitrary choice).
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But (−15+6
√

5)(−15−6
√

5) = 225−36 ·5 = 45 hence −15−6
√

5 = 45/α2,
so the four roots of f are α,−α, 3

√
5/α,−3

√
5/α and since

√
5 ∈ L, they

all lie in L. Therefore L is a splitting field for the separable polynomial f
hence L/Q is Galois.

Finally, we compute the Galois group Gal(L/Q). Since f is irreducible
over Q, one can find automorphisms of L taking α to any of the other roots.
Let σ be the automorphism taking α to 3

√
5/α. Then σ is of order 4. To

see this, we first compute σ(
√

5). We know that

σ(−15+6
√

5) = σ(α2) = σ(α)2 = (3
√

5/α)2 = 45/(−15+6
√

5) = −15−6
√

5

thus σ(
√

5) = −√5. We therefore have

σ(α) = 3
√

5/α

σ2(α) = σ(3
√

5/α) = −3
√

5/σ(α) = −α

σ3(α) = σ(−α) = −3
√

5/α

σ4(α) = σ(−3
√

5/α) = α

so σ is of order 4. Since |Gal(L/Q)| = [L : Q] = 4 we deduce that the Galois
group is cyclic of order 4.

Problem 9.7. Let L/K be an extension of prime degree p, and let α ∈ L\K.
Denote by f(t) ∈ K[t] the minimal polynomial of α over K, and assume that
f has another root β 6= α in L.

We will show that L/K is Galois by showing that f is a separable poly-
nomial over K and L is its splitting field over K.

Step 1: Construction of σ ∈ Gal(L/K) with σ(α) = β. We have [L : K] =
[L : K(α)][K(α) : K] and since [L : K] = p is prime and α 6∈ K, we deduce
that L = K(α). Note also that β 6∈ K (otherwise f would have a root in K,
contradicting its irreducibility) so the same argument yields L = K(β).

Now, α and β are two roots of the same irreducible polynomial f(t) ∈ K[t],
hence there exists a K-isomorphism σ : K(α) → K(β) such that σ(α) = β.
By the preceding paragraph, L = K(α) = K(β), so that σ ∈ Gal(L/K).

Step 2: Producing more roots of f in L. We know that since α is a root of
f ∈ K[t], so is σ(α). Applying this again and again, we see that σi(α) are
also roots of f for any i ≥ 0. Since the number of roots is finite (bounded
by deg f), there exist i, j such that σi(α) = σj(α) and since σ is invertible,
we have σj−i(α) = α, so σ has a finite order, denote it by d ≥ 1.

Step 3: Showing that d = p. Consider the field F = L〈σ〉, the field fixed by
the subgroup generated by σ. This is an intermediate field K ⊆ L〈σ〉 ⊆ L.
But since [L : K] is prime, again by multiplicity of degrees, either F = K or
F = L. But F = L is impossible since σ(α) = β 6= α, so F = K. Now one
can argue in several ways, for example to use (a version of) Galois theorem
that asserts what L/F is Galois with Galois group of order d = |〈σ〉|, hence
d = p. Alternatively, one can consider the polynomial F (t) =

∏d−1
i=0 (t −

σi(α)) which is invariant under the action of σ on coefficients hence has its
coefficients in F = K. We get a polynomial in K[t] of degree d which has α
as a root, and by minimality of f , we must have d = p and F = f (up to a
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scalar). We also see that f has p distinct roots (the images of α) hence it is
separable.


