HOMEWORK \#9 SOLUTIONS TO SELECTED PROBLEMS

Problem 9.5. Let K be of prime characteristic p, and let L / K be Galois extension of degree p. Since $[L: K]=p$, the Galois group of L / K is cyclic of order p. Let σ be a generator.

First reduction. Suppose that there exists $\alpha \in L$ such that $\sigma(\alpha)=\alpha-1$. Then obviously $\alpha \notin K$ and $\sigma^{i}(\alpha)=\alpha-i$ for $0 \leq i<p$. Therefore $N_{L / K}(\alpha)=$ $\alpha \cdot \sigma(\alpha) \cdot \sigma^{2}(\alpha) \cdot \ldots \cdot \sigma^{p-1}(\alpha)=\alpha(\alpha-1)(\alpha-2) \cdot \ldots \cdot(\alpha-(p-1))=\alpha^{p}-\alpha$ is an element of K.

Note that the last equality follows from the factorization $t^{p}-t=t(t-$ $1) \cdot \ldots \cdot(t-(p-1))$ that holds in \mathbb{F}_{p} hence in any field of characteristic p.

Second reduction. Now suppose that there exists $\beta \in L$ with $\operatorname{Tr}_{L / K}(\beta)=1$. Let $\alpha \in L$ be the element

$$
\alpha=\sigma(\beta)+2 \sigma^{2}(\beta)+\cdots+(p-1) \sigma^{p-1}(\beta)
$$

Then

$$
\sigma(\alpha)=\sigma^{2}(\beta)+2 \sigma^{3}(\beta)+\cdots+(p-2) \sigma^{p-1}(\beta)+(p-1) \sigma^{p}(\beta)
$$

hence

$$
\alpha-\sigma(\alpha)=\sigma(\beta)+\sigma^{2}(\beta)+\cdots+\sigma^{p-1}(\beta)+\sigma^{p}(\beta)=\operatorname{Tr}_{L / K}(\beta)=1
$$

and we found $\alpha \in L$ with $\sigma(\alpha)=\alpha-1$.
Finding β with $\operatorname{Tr}_{L / K}(\beta)=1$. This follows from the non-degeneracy of the trace form. To prove this directly, we use the Dedekind theorem on the linear dependence of automorphisms to deduce the existence of $\gamma \in L$ such that $c=\gamma+\sigma(\gamma)+\cdots+\sigma^{p-1}(\gamma) \neq 0$. But $c=\operatorname{Tr}_{L / K}(\gamma)$, so taking $\beta=\gamma / c$ we have $\operatorname{Tr}_{L / K}(\beta)=\operatorname{Tr}_{L / K}(\gamma) / c=1$.

Problem 9.6. Consider the polynomial $f(t)=t^{4}+30 t^{2}+45$ over \mathbb{Q}. It is irreducible by Eisenstein criterion with the prime 5 . Let $\alpha \in \mathbb{C}$ be a root of t and let $L=\mathbb{Q}(\alpha)$.

We first show that $[L: \mathbb{Q}]=4$. Let $\beta=\alpha^{2}$. Then β is a root of the polynomial $u^{2}+30 u+45$. The roots of this polynomial are $-15 \pm 6 \sqrt{5}$ so $\mathbb{Q}(\beta)=\mathbb{Q}(\sqrt{5})$ hence $[\mathbb{Q}(\beta): \mathbb{Q}]=2$. Since $\alpha^{2}=\beta$ we have $[\mathbb{Q}(\alpha)$: $\mathbb{Q}(\beta)] \leq 2$. To show that the degree equals 2 and not 1 , it is enough to show $\alpha \notin \mathbb{Q}(\sqrt{5})$.

Indeed, solving the equation $(a+b \sqrt{5})^{2}=-15+6 \sqrt{5}$ with $a, b \in \mathbb{Q}$, we see that $a^{2}+5 b^{2}=-15$ and $2 a b=6$. Substituting back $b=3 / a$ we get $a^{4}+15 a^{2}+45=0$ which has no solutions in \mathbb{Q} (the polynomial is even irreducible!). By multiplicity of degrees, $[L: \mathbb{Q}]=[\mathbb{Q}(\alpha): \mathbb{Q}(\sqrt{5})][\mathbb{Q}(\sqrt{5})$: $\mathbb{Q}]=2 \cdot 2=4$.

We now show that the other roots of f lie in L. By the previous computation, the roots are $\pm \sqrt{-15 \pm 6 \sqrt{5}}$, and $\alpha=\sqrt{-15+6 \sqrt{5}}$ (arbitrary choice).

But $(-15+6 \sqrt{5})(-15-6 \sqrt{5})=225-36 \cdot 5=45$ hence $-15-6 \sqrt{5}=45 / \alpha^{2}$, so the four roots of f are $\alpha,-\alpha, 3 \sqrt{5} / \alpha,-3 \sqrt{5} / \alpha$ and since $\sqrt{5} \in L$, they all lie in L. Therefore L is a splitting field for the separable polynomial f hence L / \mathbb{Q} is Galois.

Finally, we compute the Galois group $\operatorname{Gal}(L / \mathbb{Q})$. Since f is irreducible over \mathbb{Q}, one can find automorphisms of L taking α to any of the other roots. Let σ be the automorphism taking α to $3 \sqrt{5} / \alpha$. Then σ is of order 4. To see this, we first compute $\sigma(\sqrt{5})$. We know that
$\sigma(-15+6 \sqrt{5})=\sigma\left(\alpha^{2}\right)=\sigma(\alpha)^{2}=(3 \sqrt{5} / \alpha)^{2}=45 /(-15+6 \sqrt{5})=-15-6 \sqrt{5}$
thus $\sigma(\sqrt{5})=-\sqrt{5}$. We therefore have

$$
\begin{aligned}
\sigma(\alpha) & =3 \sqrt{5} / \alpha \\
\sigma^{2}(\alpha) & =\sigma(3 \sqrt{5} / \alpha)=-3 \sqrt{5} / \sigma(\alpha)=-\alpha \\
\sigma^{3}(\alpha) & =\sigma(-\alpha)=-3 \sqrt{5} / \alpha \\
\sigma^{4}(\alpha) & =\sigma(-3 \sqrt{5} / \alpha)=\alpha
\end{aligned}
$$

so σ is of order 4 . Since $|\operatorname{Gal}(L / \mathbb{Q})|=[L: \mathbb{Q}]=4$ we deduce that the Galois group is cyclic of order 4.

Problem 9.7. Let L / K be an extension of prime degree p, and let $\alpha \in L \backslash K$. Denote by $f(t) \in K[t]$ the minimal polynomial of α over K, and assume that f has another root $\beta \neq \alpha$ in L.

We will show that L / K is Galois by showing that f is a separable polynomial over K and L is its splitting field over K.

Step 1: Construction of $\sigma \in \operatorname{Gal}(L / K)$ with $\sigma(\alpha)=\beta$. We have $[L: K]=$ $[L: K(\alpha)][K(\alpha): K]$ and since $[L: K]=p$ is prime and $\alpha \notin K$, we deduce that $L=K(\alpha)$. Note also that $\beta \notin K$ (otherwise f would have a root in K, contradicting its irreducibility) so the same argument yields $L=K(\beta)$.

Now, α and β are two roots of the same irreducible polynomial $f(t) \in K[t]$, hence there exists a K-isomorphism $\sigma: K(\alpha) \rightarrow K(\beta)$ such that $\sigma(\alpha)=\beta$. By the preceding paragraph, $L=K(\alpha)=K(\beta)$, so that $\sigma \in \operatorname{Gal}(L / K)$.

Step 2: Producing more roots of f in L. We know that since α is a root of $f \in K[t]$, so is $\sigma(\alpha)$. Applying this again and again, we see that $\sigma^{i}(\alpha)$ are also roots of f for any $i \geq 0$. Since the number of roots is finite (bounded by $\operatorname{deg} f$), there exist i, j such that $\sigma^{i}(\alpha)=\sigma^{j}(\alpha)$ and since σ is invertible, we have $\sigma^{j-i}(\alpha)=\alpha$, so σ has a finite order, denote it by $d \geq 1$.

Step 3: Showing that $d=p$. Consider the field $F=L^{\langle\sigma\rangle}$, the field fixed by the subgroup generated by σ. This is an intermediate field $K \subseteq L^{\langle\sigma\rangle} \subseteq L$. But since $[L: K]$ is prime, again by multiplicity of degrees, either $F=K$ or $F=L$. But $F=L$ is impossible since $\sigma(\alpha)=\beta \neq \alpha$, so $F=K$. Now one can argue in several ways, for example to use (a version of) Galois theorem that asserts what L / F is Galois with Galois group of order $d=|\langle\sigma\rangle|$, hence $d=p$. Alternatively, one can consider the polynomial $F(t)=\prod_{i=0}^{d-1}(t-$ $\left.\sigma^{i}(\alpha)\right)$ which is invariant under the action of σ on coefficients hence has its coefficients in $F=K$. We get a polynomial in $K[t]$ of degree d which has α as a root, and by minimality of f, we must have $d=p$ and $F=f$ (up to a
scalar). We also see that f has p distinct roots (the images of α) hence it is separable.

