SOLUTIONS TO QUIZ 1

Question 1. If $f(x) \in F[x]$ is a polynomial over a field F and $0 \neq a, b \in F$ are scalars, then $f(x)$ is irreducible if and only if $f(a x+b)$ is irreducible. So to prove irreducibility it is enough to consider an appropriate linear substitution. Let $f(x)=x^{4}-8 x^{3}+17 x^{2}-4 x+2$. In an attempt to get rid of the coefficient of x^{3} we substitute $x+2$. We get that $f(x+2)=x^{4}-7 x^{2}+14$ which is irreducible by Eisenstein's criterion with the prime 7.

Question 2. $\alpha=\sqrt[5]{7}, K=\mathbb{Q}(\alpha)$.
(a) $[K: \mathbb{Q}]=5$. The degree $[\mathbb{Q}(\alpha): \mathbb{Q}]$ is equal to the degree of the minimal polynomial of α over \mathbb{Q}. Consider the polynomial $p(t)=t^{5}-7 \in$ $\mathbb{Q}[t]$. It is irreducible over \mathbb{Q} by Eisenstein's criterion with the prime 7, and has α as a root. It follows that $p(t)$ is the minimal polynomial of α over \mathbb{Q} and $[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg} p=5$.
(b) The extension K / \mathbb{Q} is not normal. It is enough to find an irreducible polynomial in $\mathbb{Q}[t]$ which has a root in K but does not split in K. We take $p(t)=t^{5}-7$ which is irreducible by (a). Let $\zeta=e^{2 \pi i / 5}$. Then $\zeta^{5}=1$ so the roots of p in \mathbb{C} are $\alpha, \zeta \alpha, \zeta^{2} \alpha, \zeta^{3} \alpha, \zeta^{4} \alpha$. Now $\alpha \in K$ but $\zeta \alpha \notin K$ because $\alpha \in \mathbb{R}$ hence $K=\mathbb{Q}(\alpha) \subset \mathbb{R}$ but $\zeta \notin \mathbb{R}$ so that $\zeta \alpha \notin \mathbb{R}$.

Question 3. (a) Obviously $\sqrt{p}+\sqrt{q} \in \mathbb{Q}(\sqrt{p}, \sqrt{q})$ so that $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is a field containing \mathbb{Q} and $\sqrt{p}+\sqrt{q}$. Since $\mathbb{Q}(\sqrt{p}+\sqrt{q})$ is the minimal field with this property, we have $\mathbb{Q}(\sqrt{p}+\sqrt{q}) \subseteq \mathbb{Q}(\sqrt{p}, \sqrt{q})$. To prove the opposite inclusion, note that

$$
(\sqrt{p}+\sqrt{q}) \cdot(\sqrt{p}-\sqrt{q})=p-q \in \mathbb{Q}
$$

hence $\sqrt{p}-\sqrt{q} \in \mathbb{Q}(\sqrt{p}+\sqrt{q})$. But

$$
\begin{aligned}
& 2 \sqrt{p}=(\sqrt{p}+\sqrt{q})+(\sqrt{p}-\sqrt{q}) \in \mathbb{Q}(\sqrt{p}+\sqrt{q}) \\
& 2 \sqrt{q}=(\sqrt{p}+\sqrt{q})-(\sqrt{p}-\sqrt{q}) \in \mathbb{Q}(\sqrt{p}+\sqrt{q})
\end{aligned}
$$

hence $\sqrt{p}, \sqrt{q} \in \mathbb{Q}(\sqrt{p}+\sqrt{q})$ so that $\mathbb{Q}(\sqrt{p}, \sqrt{q}) \subseteq \mathbb{Q}(\sqrt{p}+\sqrt{q})$.
(b) A finite extension is normal if and only if it is a splitting field of a polynomial. I claim that $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is a splitting field of the polynomial $\left(t^{2}-p\right)\left(t^{2}-q\right)$ over \mathbb{Q}. Indeed, the roots of this polynomial, $\pm \sqrt{p}, \pm \sqrt{q}$, are contained in $\mathbb{Q}(\sqrt{p}, \sqrt{q})$, and this field is generated by the roots $(\sqrt{p}$ and $\sqrt{q})$.
(c) To compute the Galois group of $\mathbb{Q}(\sqrt{p}, \sqrt{q}) / \mathbb{Q}$, we use two facts on automorphisms (see the Lemmas in the solution to homework 4). The first is that an automorphism σ on an extension $K\left(\alpha_{1}, \ldots, \alpha_{n}\right) / K$ is determined by its action on generators $\alpha_{1}, \ldots, \alpha_{n}$. In our case these are \sqrt{p} and \sqrt{q}. The second fact is that if L / K is an extension and $\alpha \in L$ is a root of a polynomial in $K[t]$, then any automorphism σ of L / K must carry α to a root of the same polynomial. In our case, considering the polynomials $t^{2}-p$
and $t^{2}-q$ we see that \sqrt{p} must go to $\pm \sqrt{p}$ and the same for \sqrt{q}, so there are at most four automorphisms.

To prove that all four possibilities indeed occur, we consider the tower $\mathbb{Q} \subset \mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\sqrt{p})(\sqrt{q})$. Since $\sqrt{q},-\sqrt{q}$ are roots of the polynomial $t^{2}-q$ and this polynomial is irreducible over $\mathbb{Q}(\sqrt{p})$ (because it is of degree 2 and an easy computation shows that its roots do not lie in $\mathbb{Q}(\sqrt{p}))$, there exists an automorphism $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{p}, \sqrt{q}) / \mathbb{Q}(\sqrt{p}))$ such that $\sigma(\sqrt{q})=-\sqrt{q}$ (and of course, $\sigma(\sqrt{p})=\sqrt{p})$. Using the tower $\mathbb{Q} \subset \mathbb{Q}(\sqrt{q}) \subset \mathbb{Q}(\sqrt{q})(\sqrt{p})$ we deduce the existence of an automorphism τ with $\tau(\sqrt{p})=-\sqrt{p}$ and $\tau(\sqrt{q})=\sqrt{q}$. We thus get four automorphisms $i d, \sigma, \tau, \sigma \tau$ and the Galois group is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
Question 4. (a) True. If K is a field, take $L=K(t)$ the field of rational functions over K. Then L / K is a nontrivial extension.
(b) True. For any integer $n \geq 1$, consider the polynomial $p_{n}(t)=t^{n}-2 \in$ $\mathbb{Q}[t]$. Then p_{n} is irreducible over \mathbb{Q} by Eistenstein's criterion with the prime 2. Take $K=\mathbb{Q}[t] /\left(p_{n}(t)\right)$. Then K is a field and $[K: \mathbb{Q}]=\operatorname{deg} p_{n}=n$.
(c) False. Take $K=\mathbb{F}_{2}$. The polynomial $p(t)=t^{2}+t+1 \in \mathbb{F}_{2}[t]$ is of degree 2 and has no roots in \mathbb{F}_{2}, so it is irreducible over \mathbb{F}_{2}. Take $L=\mathbb{F}_{2}[t] /\left(t^{2}+t+1\right)$. Then L is a field and $[L: K]=\operatorname{deg} p=2$. Assume that there exists $\alpha \in L$ such that $\alpha^{2}=a \in K$. Since $a^{2}=a$ for all $a \in K$, we have $0=\alpha^{2}-a=\alpha^{2}-a^{2}=(\alpha-a)^{2}$. It follows that $\alpha=a \in K$ so one cannot have $L=K(\alpha)$ (because $L \neq K$).

