SOLUTIONS TO SAMPLE PROBLEMS FOR QUIZ 1

Problem 1. Write $f(t)=a_{n} t^{n}+\cdots+a_{1} t+a_{0}$ where $a_{i} \in F \subset F(s)$. Consider the polynomial $g(x)=a_{n} x^{n}+\cdots+a_{1} x+\left(a_{0}-s\right) \in F(s)[x]$. Then $g(t)=f(t)-s=0$. We found a polynomial of degree $n=\operatorname{deg} f$ over $F(s)$ which has t as a root. Since $F(t)=F(s)(t),[F(t): F(s)]=[F(s)(t)$: $F(s)] \leq n=\operatorname{deg} f$. In particular, the extension is finite, hence algebraic. One can also show that $[F(t): F(s)]=\operatorname{deg} f$.
(b) From (a) we know that $[F(t): F(s)]<\infty$. If $F(s) / F$ were algebraic, it would be finite since it is a simple extension. Thus, by the product formula we would have $[F(t): F]=[F(t): F(s)][F(s): F]<\infty$. This would imply that $F(t) / F$ is algebraic, a contradiction.

Problem 2. Let $f(x)=x^{4}+8 x^{3}+19 x^{2}+12 x+6$. If $a \neq 0, b \in \mathbb{Q}$, we know that $f(x)$ is irreducible if and only if $f(a x+b)$ is irreducible. In an attempt to get rid of the coefficient of x^{3}, we substitute $x-2$ in f, we get that $f(x-2)=x^{4}-5 x^{2}+10$ which is irreducible by Eisenstein's criterion with the prime 5 . Hence $f(x)$ is also irreducible.

Problem 3. $\alpha=\sqrt[3]{11}, K=\mathbb{Q}(\alpha)$.
(a) $[K: \mathbb{Q}]=3$. The degree $[\mathbb{Q}(\alpha): \mathbb{Q}]$ is equal to the degree of the minimal polynomial of α over \mathbb{Q}. Consider the polynomial $p(t)=t^{3}-11 \in$ $\mathbb{Q}[t]$. It is irreducible over \mathbb{Q} by Eisenstein's criterion with the prime 11 , and has α as a root. It follows that $p(t)$ is the minimal polynomial of α over \mathbb{Q} and $[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg} p=3$.
(b) The extension K / \mathbb{Q} is not normal. It is enough to find an irreducible polynomial in $\mathbb{Q}[t]$ which has a root in K but does not split in K. We take $p(t)=t^{3}-11$ which is irreducible by (a). Let $\omega=e^{2 \pi i / 3}$. Then $\omega^{3}=1$ so the roots of p in \mathbb{C} are $\alpha, \omega \alpha, \omega^{2} \alpha$. Now $\alpha \in K$ but $\omega \alpha \notin K$ because $\alpha \in \mathbb{R}$ hence $K=\mathbb{Q}(\alpha) \subset \mathbb{R}$ but $\omega \alpha \notin \mathbb{R}$.
(c) $\operatorname{Gal}(K / \mathbb{Q})=\{i d\}$. Since $K=\mathbb{Q}(\alpha)$, any \mathbb{Q}-automorphism of K is determined by its action on α. We know that if α is a root of $p(t) \in$ $\mathbb{Q}[t]$ and σ is any \mathbb{Q}-homomorphism then $\sigma(\alpha)$ is also a root of $p(t)$. Take $p(t)=t^{3}-11$. Then, by (b), α is the only root of $p(t)$ in K, hence any automorphism of K must fix α hence fix K (pointwise).

Problem 4. Assume $[L: K]=p$ is prime. Let $\alpha \in L \backslash K$. Then $K \varsubsetneqq$ $K(\alpha) \subseteq L$ and $[L: K]=[L: K(\alpha)][K(\alpha): K]$. Since p is prime, one of the factors is p and the other 1. The right factor cannot be 1 since $K(\alpha) \neq K$, hence $[L: K(\alpha)]=1$ and $L=K(\alpha)$.

Problem 5. (a) False. Consider the field \mathbb{C} of complex numbers and let L / \mathbb{C} be a finite algebraic extension. Let $\alpha \in L$ and let $p(t) \in \mathbb{C}[t]$ be its minimal polynomial. Since \mathbb{C} is algebraically closed, every polynomial in $\mathbb{C}[t]$ splits over \mathbb{C}, so the only irreducible polynomials are of degree 1 . Since
p is irreducible, we have $\operatorname{deg} p=1$ and its root lies in \mathbb{C}. It follows that $\alpha \in \mathbb{C}$ hence $L=\mathbb{C}$ and \mathbb{C} does not have any nontrivial (finite) algebraic extensions.
(b) False. For any field K, consider the field $K(t)$ of rational functions over K. Then the extension $K(t) \supset K$ is simple (generated by the element t) but not algebraic, because the element t is not algebraic over K; for any nonzero polynomial p, one has $p(t) \neq 0$.

