SOLUTIONS TO QUIZ 2

Question 1. Let $g \in K[t]$ be the minimal polynomial of α over K. Then we know that $[K(\alpha): K]=\operatorname{deg} g$. On the other hand, α is a root of f, hence by minimality of g we have that g divides f.

If $f=g$ we see immediately that $[K(\alpha): K]=\operatorname{deg} f$. In the other direction, if $[K(\alpha): K]=\operatorname{deg} f$ then $\operatorname{deg} g=\operatorname{deg} f$ so that $f=g$ (up to a scalar).

Question 2. Let $\alpha=\sqrt{5}+\sqrt{7}$. We compute in $\mathbb{Q}(\sqrt{5}, \sqrt{7})$:

$$
\begin{aligned}
& \alpha^{0}=1 \\
& \alpha^{1}=\sqrt{5}+\sqrt{7} \\
& \alpha^{2}=12+2 \sqrt{35} \\
& \alpha^{4}=284+48 \sqrt{35}
\end{aligned}
$$

so we see that $\alpha^{4}-24 \alpha^{2}+4=0$, so α is a root of the polynomial $t^{4}-24 t^{2}+4$.
Since we already know that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{5}, \sqrt{7})$ (see, e.g. Quiz 1) and that $[\mathbb{Q}(\sqrt{5}, \sqrt{7}): \mathbb{Q}]=4$ we deduce that the degree of the minimal polynomial of α over \mathbb{Q} is 4 . Hence $t^{4}-24 t^{2}+4$ is the minimal polynomial of α.

Question 3. Let $\alpha=\sqrt{2+\sqrt{3}}$. Then $\alpha^{2}=2+\sqrt{3} \in \mathbb{Q}(\sqrt{3})$. First, we show that $\alpha \notin \mathbb{Q}(\sqrt{3})$, hence $[\mathbb{Q}(\alpha): \mathbb{Q}(\sqrt{3})]=2$ and $[\mathbb{Q}(\alpha): \mathbb{Q}]=[\mathbb{Q}(\alpha)$: $\mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2 \cdot 2=4$.

Indeed, if $\alpha \in \mathbb{Q}(\sqrt{3})$, there were $a, b \in \mathbb{Q}$ such that $(a+b \sqrt{3})^{2}=2+\sqrt{3}$. Writing the equations, we get

$$
\begin{aligned}
a^{2}+3 b^{2} & =2 \\
2 a b & =1
\end{aligned}
$$

so that $b=1 / 2 a$. Substituting this, we get that $a^{2}+\frac{3}{4 a^{2}}=2$, or $4 a^{4}-8 a^{2}+$ $3=0$. Solving for a^{2}, we see that $a^{2}=1 \pm \frac{1}{2}$, which is impossible for $a \in \mathbb{Q}$.

Now $2+\sqrt{3}$ is a root of the polynomial $t^{2}-4 t+1$ over \mathbb{Q}, so α is a root of $f(t)=t^{4}-4 t^{2}+1$, and since $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$, it follows that $f(t)$ is the minimal polynomial of α over \mathbb{Q}.

The (other) roots of $f(t)$ are $\pm \sqrt{2+\sqrt{3}}, \pm \sqrt{2-\sqrt{3}}$ (because $2-\sqrt{3}$ is the other root of $t^{2}-4 t+1$). We show that these roots are in $\mathbb{Q}(\alpha)$. Indeed, $(2+\sqrt{3})(2-\sqrt{3})=1$, so that $1 / \alpha$ is a square root of $2-\sqrt{3}$, and the four roots of $f(t)$ are $\alpha,-\alpha, \alpha^{-1},-\alpha^{-1}$. It follows that $\mathbb{Q}(\alpha)$ is the splitting field of the separable polynomial $f(t)$ over \mathbb{Q}, hence the extension $\mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois.

The Galois group $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$ has four elements and acts transitively on the roots, so the two possibilities are $\mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. We know that if L / K is normal and α, β are roots of an irreducible polynomial over
K, there exists an automorphism of L / K moving α to β, so the four automorphisms in $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$ are determined by the root of $f(t)$ they map α to.

Define σ, τ by $\sigma(\alpha)=-\alpha$ and $\tau(\alpha)=1 / \alpha$. Then $\sigma^{2}(\alpha)=\alpha$ and $\tau^{2}(\alpha)=$ α so that σ, τ are two elements of order 2. It follows that the Galois group is $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, consisting of $\{i d, \sigma, \tau, \sigma \tau=\tau \sigma\}$.
Question 4. (a) Since α is a root of the polynomial $t^{2}-\alpha^{2} \in F\left(\alpha^{2}\right)[t]$, we have $\left[F(\alpha): F\left(\alpha^{2}\right)\right] \leq 2$. If the degree were 2 , then by multiplicity of degrees, $[F(\alpha): F]=\left[F(\alpha): F\left(\alpha^{2}\right)\right]\left[F\left(\alpha^{2}\right): F\right]$ would be even, a contradiction. Hence the degree is 1 , which is equivalent to $\alpha \in F\left(\alpha^{2}\right)$.
(b) Let $1 \leq i \leq n$. As before, since α is a root of the polynomial $t^{i}-\alpha^{i} \in$ $F\left(\alpha^{i}\right)[t]$, we have $\left[F(\alpha): F\left(\alpha^{i}\right)\right] \leq i$. Suppose the latter degree is $1<j \leq i$. Then by multiplicity of degrees, $[F(\alpha): F]=\left[F(\alpha): F\left(\alpha^{i}\right)\right]\left[F\left(\alpha^{i}\right): F\right]$ would be divisible by j, contradicting the assumption that $[F(\alpha): F]$ is prime to $n!$. Thus we must have $\left[F(\alpha): F\left(\alpha^{i}\right)\right]=1$ so that $\alpha \in F\left(\alpha^{i}\right)$.

Applying the argument for all $1 \leq i \leq n$, we see that $\alpha \in \bigcap_{i=1}^{n} F\left(\alpha^{i}\right)$.
(c) Consider $\omega=\exp 2 \pi i / 3$. Then ω is a third root of unity which is a root of the irreducible polynomial $t^{2}+t+1 \in \mathbb{Q}[t]$. Thus $[\mathbb{Q}(\omega): \mathbb{Q}]=2$ is prime to 3 , but $\omega \notin \mathbb{Q}\left(\omega^{3}\right)=\mathbb{Q}$.
Question 6. (a) If α is a root of f, then $\alpha^{p}-\alpha-a=0$. Consider $\alpha+1$. We have $(\alpha+1)^{p}-(\alpha+1)-a=\alpha^{p}+1-\alpha-1-a=\alpha^{p}-\alpha-a=0$, hence $\alpha+1$ is also a root of f. Applying the argument again, we see that $\alpha, \alpha+1, \alpha+2, \ldots, \alpha+(p-1)$ are all roots of f. Since $\operatorname{deg} f=p$ and we found p roots, these are all the roots of f.
(b) Assume that f has no roots in F, and consider the splitting field E of f. By (a), if α is a root of f in E, we have a splitting $f(t)=(t-\alpha)(t-\alpha-$ 1) $\cdots \cdot(t-\alpha-p+1)$ in $E[t]$. If $g(t) \in F[t]$ is a nontrivial factor of f, then we must have (in $E[t]) g(t)=\prod_{i \in I}(t-\alpha-i)$ for a subset $I \subsetneq\{0,1, \ldots, p-1\}$. But the coefficient of $t^{|I|-1}$ in the product $\prod_{i \in I}(t-\alpha-i)$ is equal to minus the sum $\sum_{i \in I}(\alpha+i)=|I| \alpha+\sum_{i \in I} i$.

Since $g(t) \in F[t]$, the coefficient of $t^{|I|-1}$ lies in F, so that $|I| \alpha+\sum_{i \in I} i \in$ F. But $\mathbb{F}_{p} \subset F$, so $|I| \alpha \in F$. Since I is nontrivial, $0<|I|<p$ and it follows that $\alpha \in F$, contradicting our assumption that f has no roots in F.
(c) Let $L=F[t] /(f)$. Then L has a root α of f (namely, the image of t) and $L=F(\alpha)$. By (a), it has all the other roots $\alpha+i$ for $i \in \mathbb{F}_{p}$. Hence f splits in L, and from $L=F(\alpha)$ we get that L is the splitting field of f over F, therefore L / F is normal. Since f is of degree p and has p distinct roots in L, it is separable, thus α is separable over F and $L=F(\alpha)$ is separable over F. Thus L / F is Galois.

Since $[L: F]=[F(\alpha): F]=\operatorname{deg} f=p$ (because f is irreducible by (b)), we get by Galois theorem that $\operatorname{Gal}(L / F)$ is of order p and therefore it is cyclic of order p. A generator σ for $\operatorname{Gal}(L / F)$ is defined by $\sigma(\alpha)=\alpha+1$.

Question 7. (a) Since α is a root of $t^{3}+a t+b$, we can divide by $t-\alpha$ and get $t^{3}+a t+b=(t-\alpha)\left(t^{2}+\alpha t+\alpha^{2}+a\right)$. Now $K(\alpha) / K$ is normal if and only if $t^{2}+\alpha t+\alpha^{2}+a=0$ has a solution in $K(\alpha)$; Indeed, if there is a
solution, $K(\alpha)$ is the splitting field of $t^{3}+a t+b$ over K, hence normal over K. If there is no solution, then the irreducible polynomial $t^{3}+a t+b$ has a solution but does not split in $K(\alpha)$, and $K(\alpha) / K$ is not normal.

Since char $K \neq 2$, we can use the formula for the solution of a quadratic equation and express the solutions of $t^{2}+\alpha t+\alpha^{2}+a=0$ as

$$
\frac{-\alpha \pm \sqrt{\alpha^{2}-4\left(\alpha^{2}+a\right)}}{2}
$$

It follows that the solutions are in $K(\alpha)$ if and only if the element $-3 \alpha^{2}-4 a$ is a square in $K(\alpha)$.

