
Throughout, we work in ZF with the axiom of dependent choice, to allow conclusions under the axiom of
determinacy. Let B be one of the following Boolean algebras of subsets of Polish spaces (in section 3 we give
more precise requirements):

• The Boolean algebra generated by the Fσ-sets.

• The Borel sets.

• Assuming projective determinacy, the projective sets.

• Assuming the axiom of determinacy, all sets.

Note that as it is independent of ZFC if coanalytic sets have the perfect set property, there are formulas in
the theory with B generated by the analytic sets whose validity is independent of ZFC.

Theorem 1. (a) The monadic theory of order of R with quantification restricted to B coincides with the
one where B is given by Boolean combinations of Fσ-sets.

(b) The theory of (a) is decidable.

This immediately implies the corresponding result with R replaced by 2N, or NN, or C = 2N \ {0∞, 1∞}.
The proof is self-contained: Until and including section 3, we essentially only repeat Shelah’s results

[She75].

1 Basic results on monadic theories
For convenience, throughout we allow empty parts in a partition.

For now, let B be a Boolean algebra of subsets of a linear order X, and consider it as a monadic second-
order structure in the following way: We consider X as first-order structure in the language (⊆,∩,∪, ∁, ∅,≤),
with A ≤ B if A = {a} , B = {b} are singletons with a ≤ b. We moreover add unary relation symbols
M1, . . . ,Mu, and constant symbols P1, . . . , Pm.

Let n ∈ Z≥0, k ∈ Zn
≥0, P = (Pj)j ∈ Bm; we will also write n = |k|. We define Thk(X,P ) by recursion:

For n = 0, it is the set of valid quantifier-free monadic sentences, modulo logical equivalence in the empty
theory. For n > 0, it is

{
Thk1,...,kn−1

(X,PQ) | Q ∈ Bkn
}
. The set FThk of formally possible types is defined

analogously by omitting satisfiability in the case n = 0 (and thus the dependence on X,Pj).
Note that Thk(X,P ) = Thk(Y,Q) if and only if (X,P ) and (Y,Q) satisfy the same formulas in prenex

normal form with quantifier block of length k, that is, with n− 1 alternations and blocks of length kn, . . . , k1.
Thus, if we call a partial type k-complete whenever it only consists of such formulas and is maximal among
those types, then elements of Thk(X) correspond to (k1, . . . , kn−1)-complete types in kn variables. (Since
our Boolean algebras generated by formulas with fixed quantifier prefix are finite, all filters are principal and
thus types are in bijection with formulas.) Hence, in the following we will use the terms type and theory
interchangeably for these Thk.

Furthermore, Thk is hereditarily finite as there are only finitely many quantifier-free formulas up to
equivalence. Thus the computability of k 7→ Thk(X) is equivalent to decidability of the monadic second-order
theory of X. Clearly, k 7→ FThk is always computable.

Given P ∈ Bm and Y ⊆ X, we will also write Thk(Y, P ) for Thk(Y, {p ∩ Y | p ∈ P}). Next let I, (Xi)i∈I

linear orders, and for any i, Bi be a Boolean algebra of subsets of Xi, with unary relations Mi
1, . . . ,Mi

u on
subsets. We also apply the above construction to I with B = 2I , u = 0. We define

∑
i∈I Xi as follows: Its

underlying set is
∐

i Xi, with the lexicographic order. A Boolean algebra B of subsets is given by A ∈ B if all
A ∩Xi ∈ Bi, and similarly for Mj .

Theorem 2. Let X =
∑

i Xi with P ∈ Bm, set ti = Thk(Xi, P ), and for t ∈ FThk let Qt = {i | ti = t}.
There is ℓk with |ℓk| = |k| such that Thℓk(I, (Qt)t∈FThk

) 7→ Thk(X,P ) is computable, uniformly in k.
More formally, there are a computable map k 7→ ℓk and a computable map FThℓk,#FThk

→ FThk,m,
such that for all X,P, I as above, Thℓk(I, (Qt)t) is mapped to Thk(X,P ). In particular, the left hand side
uniquely determines the right hand side, and if the left hand side is computable, so is the right hand side.
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Proof. We describe an algorithm recursive in |k|.
For handling |k| = 0, it suffices to consider validity of atomic sentences in X, so let s, s′ be terms:

• X |= s = s′ if and only if for all t ∈ FThk with (s ̸= s′) ∈ t, we have I |= Qt = ∅.

• X |= s ≤ s (that is, s is interpreted by a singleton) if and only if there is a unique t ∈ FThk with
(s ≤ s) ∈ t and I |= Qt ≤ Qt, and for all other t ∈ FThk we have I |= Qt = ∅.

• X |= s ≤ s′ if and only if the previous condition holds for s, s′ with some ts, ts′ , and we have either
I |= Qts < Qt′s

or both (s ≤ s′) ∈ ts = ts′ .

• X |= Mj(s) if and only if for all t ∈ FThk with (Mj(s)) /∈ t, we have I |= Qt = ∅.

Now suppose |k| = n > 0. We need to compute the possible

Thk1,...,kn−1
(X,PR) =

∑
i

Thk1,...,kn−1
(Xi, PR).

Each such sum can be computed recursively if we know all possibilities for Qt =
{
i | Thk1,...,kn−1

(Xi, PR) = t
}
.

The condition is that they form a partition of I refining Q′
t′ = {i | Thk(Xi, P ) = t′} such that that whenever

Qt ⊆ Q′
t′ , then t ∈ t′.

Corollary 3. If X,Y have a decidable monadic second-order theory, so has X + Y , uniformly in X,Y .

Proof. Set I = {1, 2}, which has a decidable theory by finiteness.

If X is one of the orders {1, . . . , n} ,N,Z, we always consider the full monadic theory (i.e., B = 2X , u = 0).

Lemma 4. (a) The monadic second-order theory of {1, . . . , n} is decidable uniformly in n.

(b) The set of monadic-second order formulas which hold in some {1, . . . , n} is decidable.

Proof. (a): First, the theories of ∅, {1} are decidable by finiteness. Now the theory of {1, . . . , n} can be
computed uniformly by iterating corollary 3.

(b): It suffices to consider Thk for fixed k, which is finite. Thus taking the iterated sums of (a) yields the
same value for some n < m. Then each formula in Thk true for some {1, . . . , ℓ} is also true for such a set
with ℓ < m.

Theorem 5 (S1S). The monadic theory of N is decidable.

Proof. We compute Thk(N) by recursion on |k|. For |k| = 0 we only have to compute a finite set. Now
suppose |k| = n > 0 and set k′ = (k1, . . . , kn−1).

Given P ∈ (2N)kn , color pairs of i < j by tij = Thk′({i, . . . , j − 1} , P ). By Ramsey’s theorem, there are t
and an infinite set of n0 < n1 < . . . such that tnini+1 = t for all i. Set s = Thk′({0, . . . , n0 − 1} , P ). Thus
Thk′(N, P ) = s+

∑
i∈N t. Since any type is of this form for some s, t types of finite linear orders (and all

such sums may occur), by theorem 2 it remains to compute (for the index set) Thk′(N) (here no parameters
are necessary as the type of the summands is constant), and possible types of finite orders. Finite orders are
handled by lemma 4, and Thk′(N) by the recursion.

Corollary 6. The monadic theories of the order dual Nop and Z are decidable.
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2 A Ramsey theorem
Lemma 7. Let X a topological space, C finite, A ⊆ X somewhere dense and f : A → C. Then some fiber of
f is somewhere dense.

Proof. This follows as finite unions of nowhere dense sets are nowhere dense.

Let X a dense linear order without endpoints, with the order topology. Let C be a finite semigroup, and
f : {(x, y) ∈ X ×X | x < y} → C such that f(x, y) + f(y, z) = f(x, z) for all x, y, z ∈ X (the existence of
such a semigroup structure is equivalent to f(x, z) = f(x′, z′) whenever f(x, y) = f(x′, y′), f(y, z) = f(y′, z′)
for some y, y′, possibly adding a point to C to make it total). Call A ⊆ X homogeneous if f is constant on
A×A.

Theorem 8. There is a somewhere dense homogeneous subset.

Proof. Define F,X × 2X → 2C , (a, J) 7→
⋂

b>a f(a, •)(J ∩ (a, b)).
We define a decreasing sequence of somewhere dense Ji by recursion. Let J0 = X. By lemma 7 for any i

there is Di ⊆ C such that Ji+1 = F (•, Ji)−1({Di}) is somewhere dense.
By finiteness choose D ⊆ C such that {i | Di = D} is infinite, say of the form {k0, k1, . . . } with ki < ki+1,

and set J i = Jki+1.
Then D is a subsemigroup: Given d1, d2 ∈ D, choose any x ∈ J1 and let b > x arbitrary. Since

F (x, Jk1
) = D, there is y ∈ Jk1

⊆ J0 with y < b and f(x, y) = d1. Since F (y, Jk0
) = D, there is z ∈ Jk0

with z < b and f(y, z) = d2. Thus d1 + d2 = f(x, y) + f(y, z) = f(x, z) ∈ f(x, •)(Jk0
∩ (x, b)), and as b was

arbitary, d1 + d2 ∈ F (x, Jk0
) = D.

Choose a < b such that a ∈ J#C and J#C is dense in (a, b). By finiteness and replacing b we may
assume D = F (a, Jk0) = f(a, •)(Jk0 ∩ (a, b)). By lemma 7 there is d ∈ D such that (f(a, •))|−1

(a,b)∩J#C ({d}) is
somewhere dense, say in (a′, b′) ⊆ (a, b).

Since D is a finite semigroup, there are p, q ∈ Z>0 with p · d = (p+ q) · d and p+ q ≤ #D + 1 ≤ #C + 1.
We claim that

J =
{
x ∈ (a′, b′) ∩ J#C+1−q | f(a, x) = q · d

}
is homogeneous of color q · d and dense in (a′, b′).

For homogeneity let x, y ∈ J . Define recursively xi ∈ J i, where xp = x ∈ J ⊆ J#C+1−q ⊆ Jp. Given
xi+1, since F (xi+1, J

i) ⊇ F (xi+1, Jki+1
) = D ∋ d, there is xi ∈ J i ∩ (xi+1, y) with f(xi+1, xi) = d. Now

f(x, y) = f(xp, y) = f(xp, xp−1) + · · ·+ f(x1, x0) + f(x0, y) = p · d+ f(x0, y)

and so
f(x, y) = (p+ q) · d+ f(x0, y) = q · d+ (p · d+ f(x0, y)) = q · d+ f(x, y).

Hence as x, y ∈ J ,
f(x, y) = q · d+ f(x, y) = f(a, x) + f(x, y) = f(a, y) = q · d.

For showing it dense let a′ < a′′ < b′′ < b′. Define recursively xi ∈ J i ∩ (a′′, b′′). Here xq−1 may
be chosen such that f(a, xq−1) = d as f(a, •)−1({d}) is dense in (a′, b′). Given xi+1, since F (xi+1, J

i) ⊇
F (xi+1, Jki+1) = D ∋ d, there is xi ∈ J i ∩ (xi+1, b

′′) with f(xi+1, xi) = d. Hence

f(a, x0) = f(a, xq−1) + f(xq−1, xq−2) + · · ·+ f(x1, x0) = q · d

and so x0 ∈ J ∩ (a′′, b′′).
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3 Dense uniform orders
Now we specialize the results of section 1 to X,Xi such that the order topology is Polish, u = 2,M1 =
Cnt,M2 = Mgr. In the following, we will only use sums with all but countably many summands singletons
and the remaining ones intervals. For them, a set lies in Mi if it does in all summands, whence theorem 2
continues to hold.

We impose the following requirements on B, which in particular imply that sums of subspaces carry the
same Boolean algebra as in section 1:

• Each Fσ-set lies in B.

• Each element of B has the Baire property and the perfect set property.

• If C is Gδ, thus Polish, then pulling back B along the inclusion map of C yields B.

• B is generated as a Boolean algebra by a set which is stable under countable unions and contains all
intervals.

Next, we allow Thk for |k| = 0 to contain first-order formulas up to some fixed number of quantifiers. For
this stronger version of Thk, theorem 2 still holds: The induction start is proven by using an analogue of
theorem 2 where only the first-order theories of X,Xi (but the monadic theory of I) are considered. This
fixed number of quantifiers is in particular chosen large enough to express basic topological properties like
being perfect or having empty interior.

Proposition 9. Let C = 2N \ {0∞, 1∞}. If we can compute Thk(R) for all k with |k| = n, then the same
holds for Thk(C), Thk(2

N).

Proof. Each perfect, meager, unbounded above and below subset of R is order-isomorphic to C. Thus adding
either an existential or a universal quantifier over such sets at the front of the given formula in C allows to
reduce it to a formula in R. Finally, 2N ∼= 1 + C + 1.

In the following we will often instead of Thk use a variant pThk for partitions, which is equivalent to
compute for fixed |k|: For |k| = 0, set pThk(X,P ) = Thk(X,P ), but P is required to be a partition of X.
For |k| > 0, we do require the added Q to form a refinement of the given partition.

We assume kn+1 > 2kn for some of our statements.
We call a partition P of X = R or X = C k-uniform if for any open interval (a, b) such that a, b have no

predecessor or successor in the order, we have pThk((a, b), P ) = pThk(X,P ).
Now let P be a k-uniform partition of R for |k| = n > 0 and set k′ = (k1, . . . , kn−1). We define

pUTh1
k(R, P ) as the set of pThk′(R, Q) for Q a k-uniform refinement of P of length kn, and pUTh2

k(R, P ) as
the set of pThk′(C, Q) for some embedding C ⊆ R, and Q a refinement of P of length K = kn + k2n#FThk

that is (k1, . . . , kn−1,K)-uniform in C, such that for all gaps a < b in C (that is, b is the successor of a),
pTh({a} , Q) = pTh({b} , Q), and with the first kn variables used to partition the non-gaps and the remaining
ones to partition the gaps.

Define Ek(R, P ) to be the smallest subset of FThk satisfying the following conditions:

• pUTh1
k(R, P ) ⊆ Ek(R, P ).

• Let t1, t2 ∈ Ek(R, P ) and t ∈ pTh({a} , Q). Then t1 + t+ t2 ∈ Ek(R, P ).

• Let t1 ∈ Ek(R, P ) and t ∈ pTh({a} , Q). Then
∑

i∈Z(t1 + t) ∈ Ek(R, P ).

• For t ∈ pUTh2
k(R, P ), consider the partition of R obtained by replacing any gap (a, b) by a closed interval

whose k′-theory is determined by pTh({a} , Q) = pTh({b} , Q), whenever this lies in Ek(R, P ) (else omit
this t). Note that its theory g(t) is computable from t (using theorem 2) and require g(t) ∈ Ek(R, P ).

Note that Ek(R, P ) is computable from pUTh1
k(R, P ), pUTh2

k(R, P ).
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Lemma 10. (a) Let I ⊆ R convex without endpoints such that for x ∈ I there are a < x < b such that for
all a < a′ < b′ < b we have pThk((a

′, b′) , P ) ∈ Ek(R, P ). Then pThk(I, P ) ∈ Ek(R, P ).

(b) Suppose there are p, q and a dense D ⊆ R such that for a, b ∈ D with a < b we have p = pThk((a, b) , P )
and q = pTh({a} , P ). Then P is k-uniform.

(c) Any P is k-uniform on some interval.

Proof. (a): By assumption there is a Z-indexed sequence (ai)i with a−n → inf I, an → sup I and pThk((an, an+1) , P ) ∈
Ek(R, P ). By taking repeated binary sums, for m < n we have pThk((am, an) , P ) ∈ Ek(R, P ). By Ramsey’s
theorem there are a color (t1, t) ∈ Ek(R, P )×pTh({a} , P ) and a subsequence with t1 = pThk(

(
ani

, ani+1

)
, P )

and t = pTh({ani
} , P ) for all i. Hence pThk(I, P ) =

∑
i∈Z(t1 + t) ∈ Ek(R, P ).

(b): Again write any convex set I without endpoints as a sum of intervals (an, an+1) with endpoints in D.
Then pThk(I, P ) =

∑
i∈Z(p+ q) does not depend on I.

(c): By theorem 8 there is an interval satisfying the assumptions of (b).

Theorem 11. We have Ek(R, P ) = pThk(R, P ).

Proof. Clearly pUTh1
k(R, P ) ⊆ pThk(R, P ), and pThk(R, P ) is stable under the types of sums given above,

using uniformity to create copies on intervals and adding these intervals. And by construction g(t) ∈
pThk(R, P ).

For the converse inclusion let pThk1,...,kn−1
(R, Q) ∈ pThk(R, P ). Let C be the set of x ∈ R such that for

all a < x < b there are a < a′ < b′ < b with pThk((a
′, b′) , Q) /∈ Ek(R, P ).

Clearly C is closed.
And C has no isolated points: Suppose C ∩ (a, b) = {x}. It suffices to show for all a < a′ < x < b′ < b that

pThk((a
′, b′) , Q) ∈ Ek(R, P ). By lemma 10 (a) we have pThk((a

′, x) , Q) ∈ Ek(R, P ) and pThk((x, b
′) , Q) ∈

Ek(R, P ), whence pThk((a
′, b′) , Q) = pThk((a

′, x) , Q) + pTh({x} , Q) + pThk((x, b
′) , Q) ∈ Ek(R, P ).

Furthermore, C has empty interior: If I is any interval, by lemma 10 (c), Q is k-uniform on some interval
J ⊆ I, and its theory on any subinterval lies in pUTh1

k(R, P ) ⊆ Ek(R, P ). Thus J ∩ C = ∅ and so I ⊈ C.
Hence C is either empty or homeomorphic to C after possibly adding endpoints.
If C = ∅, then lemma 10 (a) applies with I = R.
Else by lemma 10 (c), applied to C with gaps replaced by singletons, Q is k-uniform on some open

interval of C, and the theory of any open subinterval of its convex hull in R lies in Ek(R, P ), using g(t). This
contradicts the definition of C.

4 Preliminary results
Moreover, here are some certainly well-known basic results about the topology of R:

Lemma 12. Any open subset of a Cantor set is a countable disjoint union of clopen Cantor sets.

Proof. It is a countable union of clopens Ui, and replacing Ui by Ui \ (U0 ∪ · · · ∪ Ui−1) this union may be
chosen disjoint. Finally, any nonempty clopen by compactness is a finite union of basic clopens and thus a
Cantor set.

Corollary 13. Any countable union of Cantor sets may be refined to a countable disjoint union of Cantor
sets.

Lemma 14. Any meager Fσ-set of R is a countable disjoint union of Cantor sets and points.

Proof. By local compactness it is a countable union of compact sets Ki. Since Ki is also meager, hence has
empty interior, it is a compact totally disconnected metric space, hence the union of at most one Cantor set
Ci and a countable set Di. Finally apply corollary 13.

Corollary 15. Any meager subset of R is contained in a countable disjoint union of Cantor sets.
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Proof. Since any point is contained in a Cantor set, by lemma 14 it is contained in a countable union of
Cantor sets. Now use corollary 13.

Since we added predicates for countable and meager sets in section 3, it may be good to know (although not
logically necessary) that these notions are definable in the theory, thus only serve for eliminating quantifiers.
And the proof for meager sets is a toy version of theorems 17 (b) and 17 (c).

First, it is easy to define standard topological notions as open, closed, dense, connected or if the number
of (isolated) points of a set equals a fixed finite number. Thus, using the perfect set property, we can define
countability.

Definability of meagerness follows from the following result, where a subset of a Polish space without
isolated points is called very dense if its intersection with every nonempty open is uncountable.

Lemma 16. For a Borel A ⊆ R the following are equivalent:

(i) A is meager.

(ii) For each nonempty open U there is a very dense Borel B ⊆ U such that there is no Cantor set C ⊆ A∪B
with both A,B dense in C.

Proof. (i) =⇒ (ii): A is contained in a countable union of Cantor sets Ai. For each basic open Ui, the
uncountable Ui \A contains a Cantor set Bi, and we set B =

⋃
i Bi. If C ⊆ A ∪B =

⋃
i Ai ∪Bi, some Ai or

Bi is nonmeager, hence by closedness has nonempty interior. Thus as A,B are disjoint, B or A is not dense.
¬(i) =⇒ ¬(ii): Choose U such that A is comeager in U and let B ⊆ U very dense. Shrinking A,B we

may assume that A is Gδ and B is a countable union of Cantor sets Bi. The complement of A is contained
in countably many pairwise disjoint Cantor sets Ci.

Enumerate the basic opens Ui and set j−1 = 0. Since Ui \
⋃

p<i Cjp has nonempty interior, it meets B
in an uncountable set. Thus A ∩ B ∩ Ui is uncountable or there are ji > ji−1 and ki with Cji ∩ Bki

∩ Ui

uncountable. Then A ∪
⋃

i Bki ∩ Cji is Gδ, hence Polish, with both A,B very dense, and thus contains the
desired Cantor set.

5 The new part
Theorem 17. Let P be k-uniform P with |k| = n, and suppose pThk(R) is given.

(a) If n > 0, then pThk(R, P ) can be computed from the comeager part P0 and pUTh2
k(R, P ).

(b) Suppose P0 is the comeager part, and ∁P0 is contained in a countable disjoint union of Cantor sets Ci.
Then pThk(R, P ) can be computed from {pThk(Ci, P ) | i}.

(c) For any set T of satisfiable pThk(2
N, P ), there is a partition of R with comeager part P0 that is of the

form of (b), called uniform sum and denoted
∑P0 T or

∑P0

pThk(Ci,P )∈T Ci.

Proof. We use recursion on n and set k′ = (k1, . . . , kn−1).
(b): n = 0 is easy: P0 is the unique comeager part and a part is countable or empty if and only if it is

so in all summands. The first-order theory reduces to completeness and decidability of the theory of dense
linear orders without endpoints and with a partition into n dense sets, uniformly in n.

For n > 0, by theorem 11 it suffices to compute pUTh1
k, pUTh2

k. Thus consider some pThk′(X,Q) for
X = R or X ∼= C.

First suppose P0 ∩X is comeager in X. Then some part Q0 ⊆ P0 is still comeager, and by adding parts
with trivial partition P0 for P0 \Q0 to the decomposition (whose types can be computed using pThk(R)),
we may assume P0 = Q0. Now replace each Ci by a nonempty set

{
C1

i , . . . , C
ki
i

}
of possible refinements of

(Ci, P ) to a partition Q. Then pThk′′(R, Q) can be computed recursively for appropriate k′′ with |k′′| = n− 1,
whence the set of possible pThk′(X,Q) can by the proof of proposition 9. And all elements of pUTh1

k or with
P0 ∩X comeager are of this form.
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Else by uniformity and the Baire property, P0 ∩X is meager in X. Thus the union of all Ci and hence
some Ci are nonmeager in X. Since Ci ∩ X is closed in X, it even has nonempty interior and thus by
uniformity of X, X has the type of an open interval of Ci, thus of a copy of C in Ci, and the possible ones
can be computed from pThk(Ci).

(c): If T is empty, this is trivial. Else taking finite sums we may assume T = {pThk(C,P )}.
We define an increasing sequence Di of Cantor sets by recursion, with D0 = C. Given Di, add a copy of

C in each complementary interval and call the resulting Cantor set Di+1, ensuring that Di+1 meets each
subinterval of [−i, i] of length at least 1

i . At the end, combine the given partition on
⋃

i Di with the trivial
partition into P0 on its complement to obtain a partition of R.

It remains to show this partition k-uniform. By lemma 10 (c) it is k-uniform on some interval. The claim
follows as any interval contains a subinterval homeomorphic to the partition.

(a): By theorem 11 it remains to compute pUTh1
k(R, P ). By (b) and corollary 15 it suffices to compute

the possible pThk′(C,Q) for C a Cantor set and Q a not necessarily uniform refinement of P : Then the
possible uniform refinements of (R, P ) have types given by uniform sums of (c) with the summands a subset
S of the possible pThk′(C,Q) such that for any possible (C,P ) there is a refinement in S.

For this we modify the proof of theorem 11: Define Ek(2
N, P ) to be the smallest subset of FThk satisfying

the conditions pUTh2
k(R, P ) ⊆ Ek(R, P ), the same conditions for sums, and the same condition for g(t),

but where we fill the gaps with Cantor sets instead of real intervals. Then Ek(2
N, P ) is the set of these

pThk′(C,Q) by the same proof, defining for example C as the set of x ∈ 2N such that the same condition
holds.

We define for a k-uniform partition P of R or C, or more precisely for its type t = pThk(R, P ), the rank
rk t = rkP ∈ N ∪ {∞} as the largest number satisfying:

• A trivial partition, that is, a partition with only one uncountable part, has rank 0.

• If P is a partition of C, then its rank is the rank of the partition of R obtained by replacing gaps by
singletons.

• If rkCi ≤ n for all i, then rk
∑P0

i Ci ≤ n+ 1.

For t = pThk1,...,kn(R, P ) and m ≤ n write t|m = pThk1,...,km(R, P ).
If P is k-uniform, we call t minimal, if t is trivial, or if t is a ⊆-least element of the uniform t′ with

t′|n− 1 = t|n− 1. We call the type of (C, P ) minimal if the type of R obtained by replacing gaps by singletons
is minimal.

Lemma 18. Uniform sums of minimal types are minimal.

Proof. This follows from the description of the n-types of sums in the proof of theorem 17 (b), and the fact
that any realization contains the n− 1-types of all summands in any interval by uniformity. To handle trivial
summands, use the perfect set property.

Theorem 19. (a) The rank of any uniform partition is finite.

(b) If t = pThk(R, P ) with n = |k| is k-uniform, there is a minimal M(t) with M(t)|n = t and rkM(t) = rk t.

Proof. We use simultaneous induction on n = |k|.
(a) for n = 0: We show that every nontrivial partition has rank 1. Indeed, it is determined by knowing

which parts are empty, countable, or meager. Thus it is a uniform sum, with the given comeager part, a
summand for each uncountable meager part, and a trivial summand for the countable parts.

(a) implies (b) for the same n: We use induction on rk t, and trivial partitions are easy. Else by (a)
write t =

∑P0

i Ci with Ci uniform and rkCi < rk t. Set M(t) =
∑P0

i M(Ci), which is valid by the induction
hypothesis. This is uniform with rkM(t) ≤ 1 +maxi rkM(Ci) = 1 +maxi rkCi ≤ rk t. Minimality follows
from lemma 18.
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(b) for n implies (a) for n + 1: Let T be an n + 1-type of a uniform partition P with comeager part
P0. By (b) for any t ∈ pUTh2

k(R, P ), M(t) exists. Thus it suffices to show T =
∑P0

t∈pUTh2
k(R,P ) M(t). By

theorem 17 (a) it suffices to show that they have the same pUTh2
k, and clearly the one of T is contained in

the one of the sum. Equality follows from lemma 18.

Lemma 20. Given pThk(R), the k-theory of a trivial partition is computable.

Proof. By theorem 17 (a) it suffices to compute pUTh2
k. Its elements are trivial with an arbitrary subset of

the given countable parts.

Corollary 21. The monadic second-order theory of (R, <) with quantification restricted to B is decidable.

Proof. We compute Thk(R) by recursion on |k|. The case |k| = 0 is clear. For |k| > 0 by theorem 11 it
suffices to compute pUTh1

k(R), pUTh2
k(R).

By proposition 9 we can reduce the second one to the first one after increasing the last component of k,
and so it suffices to compute all possible types of uniform partitions. By theorem 19 we can compute them
by recursion on the rank, using theorem 17 (b) for positive ranks, and lemma 20 and the recursion on |k| for
rank 0.
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